This paper presents Virginia Tech’s wireless testbed supporting research on long-term evolution (LTE) signaling and radio frequency (RF) spectrum coexistence. LTE is continuously refined and new features released. As the communications contexts for LTE expand, new research problems arise and include operation in harsh RF signaling environments and coexistence with other radios. Our testbed provides an integrated research tool for investigating these and other research problems; it allows analyzing the severity of the problem, designing and rapidly prototyping solutions, and assessing them with standard-compliant equipment and test procedures. The modular testbed integrates general-purpose software-defined radio hardware, LTE-specific test equipment, RF components, free open-source and commercial LTE software, a configurable RF network and recorded radar waveform samples. It supports RF channel emulated and over-the-air radiated modes. The testbed can be remotely accessed and configured. An RF switching network allows for designing many different experiments that can involve a variety of real and virtual radios with support for multiple-input multiple-output (MIMO) antenna operation. We present the testbed, the research it has enabled and some valuable lessons that we learned and that may help designing, developing, and operating future wireless testbeds.
more »
« less
Creating RF Scenarios for Large-scale, Real-time Wireless Channel Emulators
Recent years have seen the introduction of large- scale platforms for experimental wireless research. These platforms, which include testbeds like those of the PAWR program and emulators like Colosseum, allow researchers to prototype and test their solutions in a sound yet realistic wireless environment before actual deployment. Emulators, in particular, enable wire- less experiments that are not site-specific as those on real testbeds. Researchers can choose among different radio frequency (RF) scenarios for real-time emulation of a vast variety of different situations, with different numbers of users, RF bandwidth, antenna counts, hardware requirements, etc. Although very powerful, in that they can emulate virtually any real-world deployment, emulated scenarios are only as useful as how accurately they can capture the targeted wireless channel and environment. Achieving emulation accuracy is particularly challenging, especially for experiments at scale for which emulators require considerable amounts of computational resources. In this paper we propose a framework to create RF scenarios for emulators like Colosseum from rich forms of inputs, like those obtained by measurements through radio equipment or via software (e.g., ray-tracers and electromagnetic field solvers). Our framework optimally scales down the large set of RF data in input to the fewer parameters allowed by the emulator by using efficient clustering techniques and channel impulse response re-sampling. We showcase our method by generating wireless scenarios for Colosseum by using Remcom’s Wireless InSite, a commercial-grade ray-tracer that produces key characteristics of the wireless channel. Examples are provided for line-of-sight and non-line-of-sight scenarios on portions of the Northeastern University main campus.
more »
« less
- Award ID(s):
- 1925601
- NSF-PAR ID:
- 10298726
- Date Published:
- Journal Name:
- IEEE MedComNet 2021
- Page Range / eLocation ID:
- 1-8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper focuses on COSMOS ś Cloud enhanced Open Software defined MObile wireless testbed for city-Scale deployment. The COSMOS testbed is being deployed in West Harlem (New York City) as part of the NSF Platforms for Advanced Wireless Research (PAWR) program. It will enable researchers to explore the technology łsweet spotž of ultra-high bandwidth and ultra-low latency in the most demanding real-world environment. We describe the testbed’s architecture, the design and deployment challenges, and the experience gained during the design and pilot deployment. Specifically, we describe COSMOS’ computing and network architectures, the critical building blocks, and its programmability at different layers. The building blocks include software-defined radios, 28 GHz millimeter-wave phased array modules, optical transport network, core and edge cloud, and control and management software. We describe COSMOS’ deployment phases in a dense urban environment, the research areas that could be studied in the testbed, and specific example experiments. Finally, we discuss our experience with using COSMOS as an educational tool.more » « less
-
Video scene analysis is a well-investigated area where researchers have devoted efforts to detect and classify people and objects in the scene. However, real-life scenes are more complex: the intrinsic states of the objects (e.g., machine operating states or human vital signals) are often overlooked by vision-based scene analysis. Recent work has proposed a radio frequency (RF) sensing technique, wireless vibrometry, that employs wireless signals to sense subtle vibrations from the objects and infer their internal states. We envision that the combination of video scene analysis with wireless vibrometry form a more comprehensive understanding of the scene, namely "rich scene analysis". However, the RF sensors used in wireless vibrometry only provide time series, and it is challenging to associate these time series data with multiple real-world objects. We propose a real-time RF-vision sensor fusion system, Capricorn, that efficiently builds a cross-modal correspondence between visual pixels and RF time series to better understand the complex natures of a scene. The vision sensors in Capricorn model the surrounding environment in 3D and obtain the distances of different objects. In the RF domain, the distance is proportional to the signal time-of-flight (ToF), and we can leverage the ToF to separate the RF time series corresponding to each object. The RF-vision sensor fusion in Capricorn brings multiple benefits. The vision sensors provide environmental contexts to guide the processing of RF data, which helps us select the most appropriate algorithms and models. Meanwhile, the RF sensor yields additional information that is originally invisible to vision sensors, providing insight into objects' intrinsic states. Our extensive evaluations show that Capricorn real-timely monitors multiple appliances' operating status with an accuracy of 97%+ and recovers vital signals like respirations from multiple people. A video (https://youtu.be/b-5nav3Fi78) demonstrates the capability of Capricorn.more » « less
-
We propose a sensing system comprising a large network of tiny, battery-less, Radio Frequency (RF)-powered sensors that use backscatter communication. The sensors use an entirely passive technique to 'sense' the parameters of the wireless channel between themselves. Since the material properties influence RF channels, this fine-grain sensing can uncover multiple material properties both at a large scale and fine spatial resolution. In this paper, we study the feasibility of the proposed passive technique for monitoring parameters of material in which the sensors are embedded. We performed a set of experiments where the sensor-to-sensor wireless channel parameters are well-defined using physics-based modeling, and we compared the theoretical and experimentally obtained values. For some material parameters of interest, like humidity or strain, the relationship with the observed wireless channel parameters have to be modeled relying on data-driven approaches. The initial experiments show an observable difference in the sensor-to-sensor channel phase with variation in the applied weights.more » « less
-
null (Ed.)ABSTRACT In order to support experimentation with full-duplex (FD) wireless, we recently integrated two generations of FD radios in the open-access ORBIT and COSMOS testbeds. First, we integrated a customized 1st generation (Gen-1) narrowband FD radio in the indoor ORBIT testbed. Then, we integrated two 2 nd generation (Gen-2) wideband FD radios in the city-scale PAWR COSMOS testbed. Each integrated FD radio consists of an antenna, a customized RF self-interference (SI) canceller box, a USRP software-defined radio (SDR), and a remotely accessible compute node. The Gen-1/Gen-2 RF SI canceller box includes an RF canceller printed circuit board (PCB) which emulates a customized integrated circuit (IC) RF canceller implementation. The amplitude- and phase-based Gen-1 narrowband RF canceller achieves 40 dB RF SIC across 5 MHz. The Gen-2 wideband canceller is based on the technique of frequency-domain equalization (FDE) and achieves 50 dB RF SI cancellation (SIC) across 20 MHz. In this paper, we present the design and testbed integration of the two generations of FD radios. We then present example experiments that can be remotely run and modified by experimenters. Finally, we discuss future improvements and potential FD wireless experiments that can be supported by these open-access FD radios integrated in the COSMOS testbed.more » « less