Abstract Cyber‐physical systems (CPS) integrate control, sensing, and processing into interconnected physical components to support applications within transportation, energy, healthcare, environment, and various other areas. Secure and reliable wireless communication between devices is necessary to enable the widespread adoption of these emerging technologies. Cyber‐physical systems devices must be protected against active threats, such as Radio Frequency (RF) Jammers, which intentionally disrupt communication links. Jamming detection and mitigation techniques must be evaluated extensively to validate algorithms prior to full implementation. Challenges related to obtaining zoning permits, Federal Aviation Administration (FAA) pilot certification for Unmanned Aerial Vehicles (UAVs), and Federal Communications Commission (FCC) licencing lead to evaluation limited to simulation‐based or simplistic, non‐representative hardware experimentation. A site‐specific ray‐tracing emulation framework is presented to provide a realistic evaluation of communication devices under RF jamming attacks in complex scenarios involving mobility, vehicular, and UAV systems. System architecture and capabilities are provided for the devices under test, real‐world jamming adversaries, channel modelling, and channel emulation. Case studies are provided to demonstrate the use of the framework for different applications and jamming threats. The experimental results illustrate the benefit of the ray‐tracing emulation system for conducting complex wireless communication studies under the presence of RF jamming.
more »
« less
Creating RF Scenarios for Large-scale, Real-time Wireless Channel Emulators
Recent years have seen the introduction of large- scale platforms for experimental wireless research. These platforms, which include testbeds like those of the PAWR program and emulators like Colosseum, allow researchers to prototype and test their solutions in a sound yet realistic wireless environment before actual deployment. Emulators, in particular, enable wire- less experiments that are not site-specific as those on real testbeds. Researchers can choose among different radio frequency (RF) scenarios for real-time emulation of a vast variety of different situations, with different numbers of users, RF bandwidth, antenna counts, hardware requirements, etc. Although very powerful, in that they can emulate virtually any real-world deployment, emulated scenarios are only as useful as how accurately they can capture the targeted wireless channel and environment. Achieving emulation accuracy is particularly challenging, especially for experiments at scale for which emulators require considerable amounts of computational resources. In this paper we propose a framework to create RF scenarios for emulators like Colosseum from rich forms of inputs, like those obtained by measurements through radio equipment or via software (e.g., ray-tracers and electromagnetic field solvers). Our framework optimally scales down the large set of RF data in input to the fewer parameters allowed by the emulator by using efficient clustering techniques and channel impulse response re-sampling. We showcase our method by generating wireless scenarios for Colosseum by using Remcom’s Wireless InSite, a commercial-grade ray-tracer that produces key characteristics of the wireless channel. Examples are provided for line-of-sight and non-line-of-sight scenarios on portions of the Northeastern University main campus.
more »
« less
- Award ID(s):
- 1925601
- PAR ID:
- 10298726
- Date Published:
- Journal Name:
- IEEE MedComNet 2021
- Page Range / eLocation ID:
- 1-8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper presents Virginia Tech’s wireless testbed supporting research on long-term evolution (LTE) signaling and radio frequency (RF) spectrum coexistence. LTE is continuously refined and new features released. As the communications contexts for LTE expand, new research problems arise and include operation in harsh RF signaling environments and coexistence with other radios. Our testbed provides an integrated research tool for investigating these and other research problems; it allows analyzing the severity of the problem, designing and rapidly prototyping solutions, and assessing them with standard-compliant equipment and test procedures. The modular testbed integrates general-purpose software-defined radio hardware, LTE-specific test equipment, RF components, free open-source and commercial LTE software, a configurable RF network and recorded radar waveform samples. It supports RF channel emulated and over-the-air radiated modes. The testbed can be remotely accessed and configured. An RF switching network allows for designing many different experiments that can involve a variety of real and virtual radios with support for multiple-input multiple-output (MIMO) antenna operation. We present the testbed, the research it has enabled and some valuable lessons that we learned and that may help designing, developing, and operating future wireless testbeds.more » « less
-
Abstract Wireless communication devices must be protected from malicious threats, including active jamming attacks, due to the widespread use of wireless systems throughout our every‐day lives. Jamming mitigation techniques are predominately evaluated through simulation or with hardware for very specific jamming conditions. In this paper, an experimental software defined radio‐based RF jamming mitigation platform which performs online jammer classification and leverages reconfigurable beam‐steering antennas at the physical layer is introduced. A ray‐tracing emulation system is presented and validated to enable hardware‐in‐the‐loop jamming experiments of complex outdoor and mobile site‐specific scenarios. Random forests classifiers are trained based on over‐the‐air collected data and integrated into the platform. The mitigation system is evaluated for both over‐the‐air and ray‐tracing emulated environments. The experimental results highlight the benefit of using the jamming mitigation system in the presence of active jamming attacks.more » « less
-
This paper focuses on COSMOS ś Cloud enhanced Open Software defined MObile wireless testbed for city-Scale deployment. The COSMOS testbed is being deployed in West Harlem (New York City) as part of the NSF Platforms for Advanced Wireless Research (PAWR) program. It will enable researchers to explore the technology łsweet spotž of ultra-high bandwidth and ultra-low latency in the most demanding real-world environment. We describe the testbed’s architecture, the design and deployment challenges, and the experience gained during the design and pilot deployment. Specifically, we describe COSMOS’ computing and network architectures, the critical building blocks, and its programmability at different layers. The building blocks include software-defined radios, 28 GHz millimeter-wave phased array modules, optical transport network, core and edge cloud, and control and management software. We describe COSMOS’ deployment phases in a dense urban environment, the research areas that could be studied in the testbed, and specific example experiments. Finally, we discuss our experience with using COSMOS as an educational tool.more » « less
-
Video scene analysis is a well-investigated area where researchers have devoted efforts to detect and classify people and objects in the scene. However, real-life scenes are more complex: the intrinsic states of the objects (e.g., machine operating states or human vital signals) are often overlooked by vision-based scene analysis. Recent work has proposed a radio frequency (RF) sensing technique, wireless vibrometry, that employs wireless signals to sense subtle vibrations from the objects and infer their internal states. We envision that the combination of video scene analysis with wireless vibrometry form a more comprehensive understanding of the scene, namely "rich scene analysis". However, the RF sensors used in wireless vibrometry only provide time series, and it is challenging to associate these time series data with multiple real-world objects. We propose a real-time RF-vision sensor fusion system, Capricorn, that efficiently builds a cross-modal correspondence between visual pixels and RF time series to better understand the complex natures of a scene. The vision sensors in Capricorn model the surrounding environment in 3D and obtain the distances of different objects. In the RF domain, the distance is proportional to the signal time-of-flight (ToF), and we can leverage the ToF to separate the RF time series corresponding to each object. The RF-vision sensor fusion in Capricorn brings multiple benefits. The vision sensors provide environmental contexts to guide the processing of RF data, which helps us select the most appropriate algorithms and models. Meanwhile, the RF sensor yields additional information that is originally invisible to vision sensors, providing insight into objects' intrinsic states. Our extensive evaluations show that Capricorn real-timely monitors multiple appliances' operating status with an accuracy of 97%+ and recovers vital signals like respirations from multiple people. A video (https://youtu.be/b-5nav3Fi78) demonstrates the capability of Capricorn.more » « less
An official website of the United States government

