The rapid development of three-dimensional (3D) acquisition technology based on 3D sensors provides a large volume of data, which are often represented in the form of point clouds. Point cloud representation can preserve the original geometric information along with associated attributes in a 3D space. Therefore, it has been widely adopted in many scene-understanding-related applications such as virtual reality (VR) and autonomous driving. However, the massive amount of point cloud data aggregated from distributed 3D sensors also poses challenges for secure data collection, management, storage, and sharing. Thanks to the characteristics of decentralization and security, Blockchain has great potential to improve point cloud services and enhance security and privacy preservation. Inspired by the rationales behind the software-defined network (SDN) technology, this paper envisions SAUSA, a Blockchain-based authentication network that is capable of recording, tracking, and auditing the access, usage, and storage of 3D point cloud datasets in their life-cycle in a decentralized manner. SAUSA adopts an SDN-inspired point cloud service architecture, which allows for efficient data processing and delivery to satisfy diverse quality-of-service (QoS) requirements. A Blockchain-based authentication framework is proposed to ensure security and privacy preservation in point cloud data acquisition, storage, and analytics. Leveraging smart contracts for digitizing access control policies and point cloud data on the Blockchain, data owners have full control of their 3D sensors and point clouds. In addition, anyone can verify the authenticity and integrity of point clouds in use without relying on a third party. Moreover, SAUSA integrates a decentralized storage platform to store encrypted point clouds while recording references of raw data on the distributed ledger. Such a hybrid on-chain and off-chain storage strategy not only improves robustness and availability, but also ensures privacy preservation for sensitive information in point cloud applications. A proof-of-concept prototype is implemented and tested on a physical network. The experimental evaluation validates the feasibility and effectiveness of the proposed SAUSA solution.
more »
« less
Secure Storage and Access for Task-Scheduling Schemes on Consortium Blockchain and Interplanetary File System
Computerized systems and software, which allow optimizing and planning the processes of production, storage, transportation, sale, and distribution of goods, have emerged in the industry. Scheduling systems, in particular, are designed to control and optimize the manufacturing process. This tool can have a significant effect on the productivity of the industry because it reduces the time and cost through well-defined optimization algorithms. Recently, the applicability of blockchain technology has been demonstrated in scheduling systems to add decentralization, traceability, auditability, and verifiability of the immutable information that this technology provides. This is a novel contribution that provides scheduling systems with an additional layer of security. With the latest version of Hyperledger Fabric, the appropriate levels of permission and policies for access to information can be established with significant levels of privacy and security, which prevent malicious actors from trying to cheat or abuse the system. Different alternatives exist to manage all processes associated with the operation of a blockchain network, and among them, providers of blockchain as a service have emerged. Chainstack stands out for its simplicity and scalability features to deploy and operate a blockchain network. Our goal in this work is to create a solution for secure storage of and access to task-scheduling scheme on the consortium blockchain and inter-planetary file system as a proof of concept to demonstrate its potential and usability.
more »
« less
- Award ID(s):
- 1822137
- PAR ID:
- 10298761
- Date Published:
- Journal Name:
- The 20th IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C)
- Page Range / eLocation ID:
- 153 to 159
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The healthcare sector is constantly improving patient health record systems. However, these systems face a significant challenge when confronted with patient health record (PHR) data due to its sensitivity. In addition, patient’s data is stored and spread generally across various healthcare facilities and among providers. This arrangement of distributed data becomes problematic whenever patients want to access their health records and then share them with their care provider, which yields a lack of interoperability among various healthcare systems. Moreover, most patient health record systems adopt a centralized management structure and deploy PHRs to the cloud, which raises privacy concerns when sharing patient information over a network. Therefore, it is vital to design a framework that considers patient privacy and data security when sharing sensitive information with healthcare facilities and providers. This paper proposes a blockchain framework for secured patient health records sharing that allows patients to have full access and control over their health records. With this novel approach, our framework applies the Ethereum blockchain smart contracts, the Inter-Planetary File System (IPFS) as an off-chain storage system, and the NuCypher protocol, which functions as key management and blockchain-based proxy re-encryption to create a secured on-demand patient health records sharing system effectively. Results show that the proposed framework is more secure than other schemes, and the PHRs will not be accessible to unauthorized providers or users. In addition, all encrypted data will only be accessible to and readable by verified entities set by the patient.more » « less
-
The rapid evolution of Software-Defined Networking (SDN) has transformed network management by decoupling the control and data planes. It provides centralized control, enhanced flexibility, and programmability of network management services. However, this centralized control introduces security vulnerabilities and challenges related to data integrity, unauthorized access, and resource management. In addition, it brings forth significant challenges in secure and scalable data storage and computational resource management. These challenges are further increased by the need for real-time processing and the ever-increasing volume of data. To address these challenges, this paper presents a scalable blockchain-based framework for security and computational resource management in SDN architectures. The proposed framework ensures decentralized and tamper-resistant data handling and utilizes smart contracts for automated resource allocation. Due to the need for advanced security and scalability in SDN networks, this work incorporates sharding to improve parallel processing capabilities. The performance of sharded versus non-sharded blockchain systems under various network conditions is evaluated. Our findings demonstrate that the sharded blockchain model enhances scalability and throughput with robust security and fault tolerance. The framework is also assessed for its performance, scalability, and security to enhance SDN resilience against data breaches, malicious activities, and inefficient resource distribution.more » « less
-
Blockchain technology has heralded a new era in digital innovation, revolutionizing our approach to designing and building distributed applications in the digital sphere. Blockchain technology operates as an immutable digital ledger, where each entry representing a digital transaction is indelible and cannot be altered once established. Initially designed as the fundamental framework for cryptocurrencies, blockchain has outgrown its original purpose, demonstrating significant potential in various industries and offering a variety of security and privacy features. Our study provides a thorough and current survey of blockchain applications, security, privacy concepts, primitives, and threat models. It stands out by concentrating on how blockchain technology intersects with emerging fields like IoT, EVs, FinTech, and healthcare systems in a single framework. To provide security and privacy features, blockchain systems employ different foundational notions and primitives while tackling diverse adversarial scenarios with various capabilities and goals. This study presents a fresh examination of the current state of applications, security and privacy notions and primitives, and threat models in blockchain systems. Additionally, this work highlights existing gaps in knowledge and outlines open questions, aiming to stimulate interest in further advancements in the field.more » « less
-
In the rapidly growing consumer electronics industry, continuous innovation drives increasing demand for smart devices and advanced gadgets. However, this sector faces changing demands and complex supply chains due to the management of rapid technological advancements and consumer expectations. Seamless communication between suppliers and consumers is essential to optimize production processes, minimize waste, and enhance overall customer satisfaction. In response to these demands, this paper presents a solution that combines Digital Twins (DT) and blockchain to improve security and efficiency in metaverse-inspired consumer-oriented supply chains. Herein, DT is used to represent products in virtual spaces and blockchain secures sensitive information using encryption and access controls. Our objective is to create a transparent, secure, and user-friendly system where consumers and suppliers can interact in real-time to verify product details and access important information of featured tasks like warranties and payment settlement. Smart contracts automates these tasks to make processes faster and more reliable. Through experiments, we tested how well the system maintains product integrity, authenticates transactions, and supports consumer-oriented supply chain (CSC) operations. Comparative analysis shows that our approach improves security, performance, and scalability over existing methods. Furthermore, the proposed system not only enhances security, trust, and transparency in CSC but also sets a higher standard for consumer demands and satisfaction. The findings point to the potential solution for future innovations in metaverse-driven CSC management systems.more » « less
An official website of the United States government

