skip to main content


Title: Towards a Systems Biology Approach to Understanding the Lichen Symbiosis: Opportunities and Challenges of Implementing Network Modelling
Lichen associations, a classic model for successful and sustainable interactions between micro-organisms, have been studied for many years. However, there are significant gaps in our understanding about how the lichen symbiosis operates at the molecular level. This review addresses opportunities for expanding current knowledge on signalling and metabolic interplays in the lichen symbiosis using the tools and approaches of systems biology, particularly network modelling. The largely unexplored nature of symbiont recognition and metabolic interdependency in lichens could benefit from applying a holistic approach to understand underlying molecular mechanisms and processes. Together with ‘omics’ approaches, the application of signalling and metabolic network modelling could provide predictive means to gain insights into lichen signalling and metabolic pathways. First, we review the major signalling and recognition modalities in the lichen symbioses studied to date, and then describe how modelling signalling networks could enhance our understanding of symbiont recognition, particularly leveraging omics techniques. Next, we highlight the current state of knowledge on lichen metabolism. We also discuss metabolic network modelling as a tool to simulate flux distribution in lichen metabolic pathways and to analyse the co-dependence between symbionts. This is especially important given the growing number of lichen genomes now available and improved computational tools for reconstructing such models. We highlight the benefits and possible bottlenecks for implementing different types of network models as applied to the study of lichens.  more » « less
Award ID(s):
1846376 1541538
NSF-PAR ID:
10298808
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Microbiology
Volume:
12
ISSN:
1664-302X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Tropical corals construct the three-dimensional framework for one of the most diverse ecosystems on the planet, providing habitat to a plethora of species across taxa. However, these ecosystem engineers are facing unprecedented challenges, such as increasing disease prevalence and marine heatwaves associated with anthropogenic global change. As a result, major declines in coral cover and health are being observed across the world's oceans, often due to the breakdown of coral-associated symbioses. Here, we review the interactions between the major symbiotic partners of the coral holobiont—the cnidarian host, algae in the family Symbiodiniaceae, and the microbiome—that influence trait variation, including the molecular mechanisms that underlie symbiosis and the resulting physiological benefits of different microbial partnerships. In doing so, we highlight the current framework for the formation and maintenance of cnidarian–Symbiodiniaceae symbiosis, and the role that immunity pathways play in this relationship. We emphasize that understanding these complex interactions is challenging when you consider the vast genetic variation of the cnidarian host and algal symbiont, as well as their highly diverse microbiome, which is also an important player in coral holobiont health. Given the complex interactions between and among symbiotic partners, we propose several research directions and approaches focused on symbiosis model systems and emerging technologies that will broaden our understanding of how these partner interactions may facilitate the prediction of coral holobiont phenotype, especially under rapid environmental change.

     
    more » « less
  2. ABSTRACT

    The intracellular coral–dinoflagellate symbiosis is the engine that underpins the success of coral reefs, one of the most diverse ecosystems on the planet. However, the breakdown of the symbiosis and the loss of the microalgal symbiont (i.e. coral bleaching) due to environmental changes are resulting in the rapid degradation of coral reefs globally. There is an urgent need to understand the cellular physiology of coral bleaching at the mechanistic level to help develop solutions to mitigate the coral reef crisis. Here, at an unprecedented scope, we present novel models that integrate putative mechanisms of coral bleaching within a common framework according to the triggers (initiators of bleaching, e.g. heat, cold, light stress, hypoxia, hyposalinity), cascades (cellular pathways, e.g. photoinhibition, unfolded protein response, nitric oxide), and endpoints (mechanisms of symbiont loss, e.g. apoptosis, necrosis, exocytosis/vomocytosis). The models are supported by direct evidence from cnidarian systems, and indirectly through comparative evolutionary analyses from non‐cnidarian systems. With this approach, new putative mechanisms have been established within and between cascades initiated by different bleaching triggers. In particular, the models provide new insights into the poorly understood connections between bleaching cascades and endpoints and highlight the role of a new mechanism of symbiont loss, i.e. ‘symbiolysosomal digestion’, which is different from symbiophagy. This review also increases the approachability of bleaching physiology for specialists and non‐specialists by mapping the vast landscape of bleaching mechanisms in an atlas of comprehensible and detailed mechanistic models. We then discuss major knowledge gaps and how future research may improve the understanding of the connections between the diverse cascade of cellular pathways and the mechanisms of symbiont loss (endpoints).

     
    more » « less
  3. Synopsis The concept of trade-offs permeates our thinking about adaptive evolution because they are exhibited at every level of biological organization, from molecular and cellular processes to organismal and ecological functions. Trade-offs inevitably arise because different traits do not occur in isolation, but instead are imbedded within complex, integrated systems that make up whole organisms. The genetic and mechanistic underpinning of trade-offs can be found in the pleiotropic nodes that occur in the biological pathways shared between traits. Yet, often trade-offs are only understood as statistical correlations, limiting the ability to evaluate the interplay between how selection and constraint interact during adaptive evolution. Here, we first review the classic paradigms in which physiologists and evolutionary biologists have studied trade-offs and highlight the ways in which network and molecular pathway approaches unify these paradigms. We discuss how these approaches allow researchers to evaluate why trade-offs arise and how selection can act to overcome trait correlations and evolutionary constraints. We argue that understanding how the conserved molecular pathways are shared between different traits and functions provides a conceptual framework for evolutionary biologists, physiologists, and molecular biologists to meaningfully work together toward the goal of understanding why correlations and trade-offs occur between traits. We briefly highlight the melanocortin system and the hormonal control of osmoregulation as two case studies where an understanding of shared molecular pathways reveals why trade-offs occur between seemingly unrelated traits. While we recognize that applying such approaches poses challenges and limitations particularly in the context of natural populations, we advocate for the view that focusing on the biological pathways responsible for trade-offs provides a unified conceptual context accessible to a broad range of integrative biologists. 
    more » « less
  4. Premise

    Lichens are fungi that enter into obligate symbioses with photosynthesizing organisms (algae, cyanobacteria). Traditional narratives of lichens as binary symbiont pairs have given way to their recognition as dynamic metacommunities. Basidiomycete yeasts, particularly of the genusCyphobasidium, have been inferred to be widespread and important components of lichen metacommunities. Yet, the presence of basidiomycete yeasts across a wide diversity of lichen lineages has not previously been tested.

    Methods

    We searched for lichen‐associated cystobasidiomycete yeasts in newly generated metagenomic data from 413 samples of 339 lichen species spanning 57 families and 25 orders. The data set was generated as part of a large‐scale project to study lichen biodiversity gradients in the southern Appalachian Mountains Biodiversity Hotspot of southeastern North America.

    Results

    Our efforts detected cystobasidiomycete yeasts in nine taxa (Bryoria nadvornikiana,Heterodermia leucomelos,Lecidea roseotincta,Opegrapha vulgata,Parmotrema hypotropum,P. subsumptum,Usnea cornuta,U. strigosa, andU. subgracilis), representing 2.7% of all species sampled. Seven of these taxa (78%) are foliose (leaf‐like) or fruticose (shrubby) lichens that belong to families where basidiomycete yeasts have been previously detected. In several of the nine cases, cystobasidiomycete rDNA coverage was comparable to, or greater than, that of the primary lichen fungus single‐copy nuclear genomic rDNA, suggesting sampling artifacts are unlikely to account for our results.

    Conclusions

    Studies from diverse areas of the natural sciences have led to the need to reconceptualize lichens as dynamic metacommunities. However, our failure to detect cystobasidiomycetes in 97.3% (330 species) of the sampled species suggests that basidiomycete yeasts are not ubiquitous in lichens.

     
    more » « less
  5. Abstract

    Recent studies have uncovered remarkable diversity inDictyonemas.lat. basidiolichens, here recognized as subtribe Dictyonemateae. This group includes five genera and 148 species, but hundreds more await description. The photobionts of these lichens belong toRhizonema, a recently resurrected cyanobacterial genus known by a single species. To further investigate photobiont diversity within Dictyonemateae, we generated 765 new cyanobacterial sequences from 635 specimens collected from 18 countries. The ITS barcoding locus supported the recognition of 200 mycobiont (fungal) species among these samples, but the photobiont diversity was comparatively low. Our analyses revealed three main divisions ofRhizonema, with two repeatedly recovered as monophyletic (proposed as new species), and the third mostly paraphyletic. The paraphyletic lineage corresponds toR. interruptumand partnered with mycobionts from all five genera in Dictyonemateae. There was no evidence of photobiont‐mycobiont co‐speciation, but one of the monophyletic lineages ofRhizonemaappears to partner predominantly with one of the two major clades ofCora(mycobiont) with samples collected largely from the northern Andes. Molecular clock estimations indicate theRhizonemaspecies are much older than the fungal species in the Dictyonemateae, suggesting that these basidiolichens obtained their photobionts from older ascolichen lineages and the photobiont variation in extant lineages of Dictyonemateae is the result of multiple photobiont switches. These results support the hypothesis of lichens representing fungal farmers, in which diverse mycobiont lineages associate with a substantially lower diversity of photobionts by sharing those photobionts best suited for the lichen symbiosis among multiple and often unrelated mycobiont lineages.

     
    more » « less