Approximate communication is being seriously considered as an effective technique for reducing power consumption and improving the communication efficiency of network-on-chips (NoCs). A major problem faced by these techniques is quality control: how do we ensure that the network will transmit data with sufficient accuracy for applications to produce acceptable results? Previous methods that addressed this issue require each application to calculate the approximation level for every piece of approximable data, which takes hundreds of cycles. So the approximation information is often not available when a request packet is transmitted. Therefore, the reply packet with the approximable data is transmitted with unnecessarily absolute accuracy, reducing the effectiveness of approximate communication. In this paper, we propose a hardware-based quality management framework for approximate communication to minimize the time needed for the approximation level calculation. The proposed framework employs a configuration algorithm to continuously adjust the quality of every piece of data based on the difference between the output quality and the application's quality requirement. When the proposed framework is implemented in a network, every request packet can be transmitted with the updated approximation level. This framework results in fewer flits in each data packet and reduces traffic in NoCs while meeting the quality requirements of applications. Our cycle-accurate simulation using the AxBench benchmark suite shows that the proposed online quality management framework can reduce network latency by up to 52% and dynamic power consumption by 59% compared to previous approximate communication techniques while ensuring 95% output quality. This hardware-software codesign incurs 1% area overhead over previous techniques.
more »
« less
Deluge: Achieving Superior Efficiency, Throughput, and Scalability with Actor Based Streaming on Migrating Threads
Applications where streams of data are passed through large data structures are becoming of increasing importance. For instance network intrusion detection and cyber security as a whole rely on real time analysis of network traffic. Unfortunately, when implemented on conventional architectures such applications become horribly inefficient, especially when attempts are made to scale up performance via some sort of parallelism. An earlier paper discussed streaming anomaly detection within a stream having an unbounded range of keys on the Lucata migrating thread architecture. In this paper we introduce \textit{Deluge}, a new implementation that addresses several inadequacies of previous designs and seeks to more directly target the hardware efficiencies inherent to migratory execution within a PGAS address space. Deluge achieves major improvements in hardware efficiency, throughput, and scalability over previous implementations.
more »
« less
- Award ID(s):
- 1822939
- PAR ID:
- 10298917
- Date Published:
- Journal Name:
- IEEE High Performance Extreme Computing Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Graph signal processing (GSP) has emerged as a powerful tool for practical network applications, including power system monitoring. Recent research has focused on developing GSP-based methods for state estimation, attack detection, and topology identification using the representation of the power system voltages as smooth graph signals. Within this framework, efficient methods have been developed for detecting false data injection (FDI) attacks, which until now were perceived as nonsmooth with respect to the graph Laplacian matrix. Consequently, these methods may not be effective against smooth FDI attacks. In this paper, we propose a graph FDI (GFDI) attack that minimizes the Laplacian-based graph total variation (TV) under practical constraints. We present the GFDI attack as the solution for a non-convex constrained optimization problem. The solution to the GFDI attack problem is obtained through approximating it using ℓ1 relaxation. A series of quadratic programming problems that are classified as convex optimization problems are solved to obtain the final solution. We then propose a protection scheme that identifies the minimal set of measurements necessary to constrain the GFDI output to a high graph TV, thereby enabling its detection by existing GSP-based detectors. Our numerical simulations on the IEEE-57 and IEEE-118 bus test cases reveal the potential threat posed by well-designed GSP-based FDI attacks. Moreover, we demonstrate that integrating the proposed protection design with GSP-based detection can lead to significant hardware cost savings compared to previous designs of protection methods against FDI attacks.more » « less
-
Impostors are attackers who take over a smartphone and gain access to the legitimate user’s confidential and private information. This paper proposes a defense-in-depth mechanism to detect impostors quickly with simple Deep Learning algorithms, which can achieve better detection accuracy than the best prior work which used Machine Learning algorithms requiring computation of multiple features. Different from previous work, we then consider protecting the privacy of a user’s behavioral (sensor) data by not exposing it outside the smartphone. For this scenario, we propose a Recurrent Neural Network (RNN) based Deep Learning algorithm that uses only the legitimate user’s sensor data to learn his/her normal behavior. We propose to use Prediction Error Distribution (PED) to enhance the detection accuracy. We also show how a minimalist hardware module, dubbed SID for Smartphone Impostor Detector, can be designed and integrated into smartphones for self-contained impostor detection. Experimental results show that SID can support real-time impostor detection, at a very low hardware cost and energy consumption, compared to other RNN accelerators.more » « less
-
Many IoT applications have increasingly adopted machine learning (ML) techniques, such as classification and detection, to enhance automation and decision-making processes. With advances in hardware accelerators such as Nvidia’s Jetson embedded GPUs, the computational capabilities of end devices, particularly for ML inference workloads, have significantly improved in recent years. These advances have opened opportunities for distributing computation across the edge network, enabling optimal resource utilization and reducing request latency. Previous research has demonstrated promising results in collaborative inference, where processing units in the edge network, such as end devices and edge servers, collaboratively execute an inference request to minimize latency.This paper explores approaches for implementing collaborative inference on a single model in resource-constrained edge networks, including on-device, device-edge, and edge-edge collaboration. We present preliminary results from proof-of-concept experiments to support each case. We discuss dynamic factors that can impact the performance of these inference execution strategies, such as network variability, thermal constraints, and workload fluctuations. Finally, we outline potential directions for future research.more » « less
-
null (Ed.)Outlier detection is a statistical procedure that aims to find suspicious events or items that are different from the normal form of a dataset. It has drawn considerable interest in the field of data mining and machine learning. Outlier detection is important in many applications, including fraud detection in credit card transactions and network intrusion detection. There are two general types of outlier detection: global and local. Global outliers fall outside the normal range for an entire dataset, whereas local outliers may fall within the normal range for the entire dataset, but outside the normal range for the surrounding data points. This paper addresses local outlier detection. The best-known technique for local outlier detection is the Local Outlier Factor (LOF), a density-based technique. There are many LOF algorithms for a static data environment; however, these algorithms cannot be applied directly to data streams, which are an important type of big data. In general, local outlier detection algorithms for data streams are still deficient and better algorithms need to be developed that can effectively analyze the high velocity of data streams to detect local outliers. This paper presents a literature review of local outlier detection algorithms in static and stream environments, with an emphasis on LOF algorithms. It collects and categorizes existing local outlier detection algorithms and analyzes their characteristics. Furthermore, the paper discusses the advantages and limitations of those algorithms and proposes several promising directions for developing improved local outlier detection methods for data streams.more » « less
An official website of the United States government

