skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2025

Title: Protection Against Graph-Based False Data Injection Attacks on Power Systems
Graph signal processing (GSP) has emerged as a powerful tool for practical network applications, including power system monitoring. Recent research has focused on developing GSP-based methods for state estimation, attack detection, and topology identification using the representation of the power system voltages as smooth graph signals. Within this framework, efficient methods have been developed for detecting false data injection (FDI) attacks, which until now were perceived as nonsmooth with respect to the graph Laplacian matrix. Consequently, these methods may not be effective against smooth FDI attacks. In this paper, we propose a graph FDI (GFDI) attack that minimizes the Laplacian-based graph total variation (TV) under practical constraints. We present the GFDI attack as the solution for a non-convex constrained optimization problem. The solution to the GFDI attack problem is obtained through approximating it using ℓ1 relaxation. A series of quadratic programming problems that are classified as convex optimization problems are solved to obtain the final solution. We then propose a protection scheme that identifies the minimal set of measurements necessary to constrain the GFDI output to a high graph TV, thereby enabling its detection by existing GSP-based detectors. Our numerical simulations on the IEEE-57 and IEEE-118 bus test cases reveal the potential threat posed by well-designed GSP-based FDI attacks. Moreover, we demonstrate that integrating the proposed protection design with GSP-based detection can lead to significant hardware cost savings compared to previous designs of protection methods against FDI attacks.  more » « less
Award ID(s):
2148128
PAR ID:
10582236
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE Transactions on Control of Network Systems
Date Published:
Journal Name:
IEEE Transactions on Control of Network Systems
Volume:
11
Issue:
4
ISSN:
2372-2533
Page Range / eLocation ID:
1924 to 1936
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a deep learning based multi-label attack detection approach for the distributed control in AC microgrids. The secondary control of AC microgrids is formulated as a constrained optimization problem with voltage and frequency as control variables which is then solved using a distributed primal-dual gradient algorithm. The normally distributed false data injection (FDI) attacks against the proposed distributed control are then designed for the distributed gener-ator's output voltage and active/reactive power measurements. In order to detect the presence of false measurements, a deep learning based attack detection strategy is further developed. The proposed attack detection is formulated as a multi-label classification problem to capture the inconsistency and co-occurrence dependencies in the power flow measurements due to the presence of FDI attacks. With this multi-label classification scheme, a single model is able to identify the presence of different attacks and load change simultaneously. Two different deep learning techniques are compared to design the attack detector, and the performance of the proposed distributed control and the attack detector is demonstrated through simulations on the modified IEEE 34-bus distribution test system. 
    more » « less
  2. The urgent need for the decarbonization of power girds has accelerated the integration of renewable energy. Con-currently the increasing distributed energy resources (DER) and advanced metering infrastructures (AMI) have transformed the power grids into a more sophisticated cyber-physical system with numerous communication devices. While these transitions provide economic and environmental value, they also impose increased risk of cyber attacks and operational challenges. This paper investigates the vulnerability of the power grids with high renewable penetration against an intraday false data injection (FDI) attack on DER dispatch signals and proposes a kernel support vector regression (SVR) based detection model as a countermeasure. The intraday FDI attack scenario and the detection model are demonstrated in a numerical experiment using the HCE 187-bus test system. 
    more » « less
  3. In the process of protecting power systems against different types of cyberattacks, the primary step is to precisely model such frameworks from attacker's perspective. This paper investigates a false data injection (FDI) attack framework, which can target under-load tap changing (ULTC) transformers, resulting in manipulated voltage profile in radial smart distribution networks. The developed FDI model compromises the voltage profile of a distribution feeder through misleading the volt/var optimization, that optimally manages system-wide voltage profile and flow of reactive power. The presented attack model is formulated as a bi-objective optimization problem. The objective functions from the attacker's point of view are 1) minimizing the level of false data to be injected into the smart meters associated with load data and 2) maximizing the voltage deviation of the distribution grid. Negative impacts of such a cyberattack model have been validated and discussed in this work on an IEEE distribution test system, necessitating proper remedial actions, which will be elaborated in the next step of this research. 
    more » « less
  4. Hidden moving target defense (HMTD) is a proactive defense strategy that is kept hidden from attackers by changing the reactance of transmission lines to thwart false data injection (FDI) attacks. However, alert attackers with strong capabilities pose additional risks to the HMTD and thus, it is much-needed to evaluate the hiddenness of the HMTD. This paper first summarizes two existing alert attacker models, i.e., bad-data-detection-based alert attackers and data-driven alert attackers. Furthermore, this paper proposes a novel model-based alert attacker model that uses the MTD operation models to estimate the dispatched line reactance. The proposed attacker model can use the estimated line reactance to construct stealthy FDI attacks against HMTD methods that lack randomness. We propose a novel random-enabled HMTD (RHMTD) operation method, which utilizes random weights to introduce randomness and uses the derived hiddenness operation conditions as constraints. RHMTD is theoretically proven to be kept hidden from three alert attacker models. In addition, we analyze the detection effectiveness of the RHMTD against three alert attacker models. Simulation results on the IEEE 14-bus systems show that traditional HMTD methods fail to detect attacks by the model-based alert attacker, and RHMTD is kept hidden from three alert attackers and is effective in detecting attacks by three alert attackers. 
    more » « less
  5. Reliable methods for host-layer intrusion detection remained an open problem within computer security. Recent research has recast intrusion detection as a provenance graph anomaly detection problem thanks to concurrent advancements in machine learning and causal graph auditing. While these approaches show promise, their robustness against an adaptive adversary has yet to be proven. In particular, it is unclear if mimicry attacks, which plagued past approaches to host intrusion detection, have a similar effect on modern graph-based methods. In this work, we reveal that systematic design choices have allowed mimicry attacks to continue to abound in provenance graph host intrusion detection systems (Prov-HIDS). Against a corpus of exemplar Prov-HIDS, we develop evasion tactics that allow attackers to hide within benign process behaviors. Evaluating against public datasets, we demonstrate that an attacker can consistently evade detection (100% success rate) without modifying the underlying attack behaviors. We go on to show that our approach is feasible in live attack scenarios and outperforms domain-general adversarial sample techniques. Through open sourcing our code and datasets, this work will serve as a benchmark for the evaluation of future Prov-HIDS. 
    more » « less