Drought, coupled with rising temperatures, is an emerging threat to many forest types across the globe. At least to a degree, we expect management actions that reduce competition (e.g., thinning, prescribed fire, or both) to improve growth of residual trees during drought. The influences of management actions and drought on individual tree growth may be measured with high precision using tree-rings. Here, we summarize tree-ring-based assessments of the effectiveness of thinning and prescribed fire as drought adaptation tools, with special consideration for how these findings might apply to dry coniferous forests in the southwestern United States. The existing literature suggests that thinning treatments generally improve individual tree growth responses to drought, though the literature specific to southwestern coniferous forests is sparse. Assessments from studies beyond the southwestern United States indicate treatment effectiveness varies by thinning intensity, timing of the drought relative to treatments, and individualistic species responses. Several large-scale studies appear to conflict on specifics of how site aridity influences sensitivity to drought following thinning. Prescribed fire effects in the absence of thinning has received much less attention in terms of subsequent drought response. There are limitations for using tree-ring data to estimate drought responses (e.g., difficulties scaling up observationsmore »
Adapting western North American forests to climate change and wildfires: ten common questions
We review science-based adaptation strategies for western North American (wNA) forests that include restoring active fire regimes and fostering resilient structure and composition of forested landscapes. As part of the review, we address common questions associated with climate adaptation and realignment treatments that run counter to a broad consensus in the literature. These include: (1) Are the effects of fire exclusion overstated? If so, are treatments unwarranted and even counterproductive? (2) Is forest thinning alone sufficient to mitigate wildfire hazard? (3) Can forest thinning and prescribed burning solve the problem? (4) Should active forest management, including forest thinning, be concentrated in the wildland urban interface (WUI)? (5) Can wildfires on their own do the work of fuel treatments? (6) Is the primary objective of fuel reduction treatments to assist in future firefighting response and containment? (7) Do fuel treatments work under extreme fire weather? (8) Is the scale of the problem too great – can we ever catch up? (9) Will planting more trees mitigate climate change in wNA forests? and (10) Is post-fire management needed or even ecologically justified? Based on our review of the scientific evidence, a range of proactive management actions are justified and necessary to keep more »
- Publication Date:
- NSF-PAR ID:
- 10298946
- Journal Name:
- Ecological Applications
- ISSN:
- 1051-0761
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Drought and warming increasingly are causing widespread tree die-offs and extreme wildfires. Forest managers are struggling to improve anticipatory forest management practices given more frequent, extensive, and severe wildfire and tree die-off events triggered by “hotter drought”—drought under warmer than historical conditions. Of even greater concern is the increasing probability of multi-year droughts, or “megadroughts”—persistent droughts that span years to decades, and that under a still-warming climate, will also be hotter than historical norms. Megadroughts under warmer temperatures are disconcerting because of their potential to trigger more severe forest die-off, fire cycles, pathogens, and insect outbreaks. In this Perspective, we identify potential anticipatory and/or concurrent options for non-timber forest management actions under megadrought, which by necessity are focused more at finer spatial scales such as the stand level using higher-intensity management. These management actions build on silvicultural practices focused on growth and yield (but not harvest). Current management options that can be focused at finer scales include key silvicultural practices: selective thinning; use of carefully selected forward-thinking seed mixes; site contouring; vegetation and pest management; soil erosion control; and fire management. For the extreme challenges posed by megadroughts, management will necessarily focus even more on finer-scale, higher-intensity actions for prioritymore »
-
Characterizing wildfire regimes where wildfires are uncommon is challenged by a lack of empirical information. Moreover, climate change is projected to lead to increasingly frequent wildfires and additional annual area burned in forests historically characterized by long fire return intervals. Western Oregon and Washington, USA (westside) have experienced few large wildfires (fires greater than 100 hectares) the past century and are characterized to infrequent large fires with return intervals greater than 500 years. We evaluated impacts of climate change on wildfire hazard in a major urban watershed outside Portland, OR, USA. We simulated wildfire occurrence and fire regime characteristics under contemporary conditions (1992–2015) and four mid-century (2040–2069) scenarios using Representative Concentration Pathway (RCP) 8.5. Simulated mid-century fire seasons expanded in most scenarios, in some cases by nearly two months. In all scenarios, average fire size and frequency projections increased significantly. Fire regime characteristics under the hottest and driest mid-century scenarios illustrate novel disturbance regimes which could result in permanent changes to forest structure and composition and the provision of ecosystem services. Managers and planners can use the range of modeled outputs and simulation results to inform robust strategies for climate adaptation and risk mitigation.
-
Research Highlights: Flammability of wildland fuels is a key factor influencing risk-based decisions related to preparedness, response, and safety in Alaska. However, without effective measures of current and expected flammability, the expected likelihood of active and problematic wildfires in the future is difficult to assess and prepare for. This study evaluates the effectiveness of diverse indices to capture high-risk fires. Indicators of drought and atmospheric drivers are assessed along with the operational Canadian Forest Fire Danger Rating System (CFFDRS). Background and Objectives: In this study, 13 different indicators of atmospheric conditions, fuel moisture, and flammability are compared to determine how effective each is at identifying thresholds and trends for significant wildfire activity. Materials and Methods: Flammability indices are compared with remote sensing characterizations that identify where and when fire activity has occurred. Results: Among these flammability indicators, conventional tools calibrated to wildfire thresholds (Duff Moisture Code (DMC) and Buildup Index (BUI)), as well as measures of atmospheric forcing (Vapor Pressure Deficit (VPD)), performed best at representing the conditions favoring initiation and size of significant wildfire events. Conventional assessments of seasonal severity and overall landscape flammability using DMC and BUI can be continued with confidence. Fire models that incorporate BUI inmore »
-
Abstract Purpose of Review Increasing wildfire size and severity across the western United States has created an environmental and social crisis that must be approached from a transdisciplinary perspective. Climate change and more than a century of fire exclusion and wildfire suppression have led to contemporary wildfires with more severe environmental impacts and human smoke exposure. Wildfires increase smoke exposure for broad swaths of the US population, though outdoor workers and socially disadvantaged groups with limited adaptive capacity can be disproportionally exposed. Exposure to wildfire smoke is associated with a range of health impacts in children and adults, including exacerbation of existing respiratory diseases such as asthma and chronic obstructive pulmonary disease, worse birth outcomes, and cardiovascular events. Seasonally dry forests in Washington, Oregon, and California can benefit from ecological restoration as a way to adapt forests to climate change and reduce smoke impacts on affected communities. Recent Findings Each wildfire season, large smoke events, and their adverse impacts on human health receive considerable attention from both the public and policymakers. The severity of recent wildfire seasons has state and federal governments outlining budgets and prioritizing policies to combat the worsening crisis. This surging attention provides an opportunity to outlinemore »