- Publication Date:
- NSF-PAR ID:
- 10298984
- Journal Name:
- Human Computation
- Volume:
- 8
- Issue:
- 2
- Page Range or eLocation-ID:
- 54 to 75
- ISSN:
- 2330-8001
- Sponsoring Org:
- National Science Foundation
More Like this
-
The research data repository of the Environmental Data Initiative (EDI) is building on over 30 years of data curation research and experience in the National Science Foundation-funded US Long-Term Ecological Research (LTER) Network. It provides mature functionalities, well established workflows, and now publishes all ‘long-tail’ environmental data. High quality scientific metadata are enforced through automatic checks against community developed rules and the Ecological Metadata Language (EML) standard. Although the EDI repository is far along in making its data findable, accessible, interoperable, and reusable (FAIR), representatives from EDI and the LTER are developing best practices for the edge cases in environmental data publishing. One of these is the vast amount of imagery taken in the context of ecological research, ranging from wildlife camera traps to plankton imaging systems to aerial photography. Many images are used in biodiversity research for community analyses (e.g., individual counts, species cover, biovolume, productivity), while others are taken to study animal behavior and landscape-level change. Some examples from the LTER Network include: using photos of a heron colony to measure provisioning rates for chicks (Clarkson and Erwin 2018) or identifying changes in plant cover and functional type through time (Peters et al. 2020). Multi-spectral images are employedmore »
-
Abstract The implementation of intelligent software to identify and classify objects and individuals in visual fields is a technology of growing importance to operatives in many fields, including wildlife conservation and management. To non-experts, the methods can be abstruse and the results mystifying. Here, in the context of applying cutting edge methods to classify wildlife species from camera-trap data, we shed light on the methods themselves and types of features these methods extract to make efficient identifications and reliable classifications. The current state of the art is to employ convolutional neural networks (CNN) encoded within deep-learning algorithms. We outline these methods and present results obtained in training a CNN to classify 20 African wildlife species with an overall accuracy of 87.5% from a dataset containing 111,467 images. We demonstrate the application of a gradient-weighted class-activation-mapping (Grad-CAM) procedure to extract the most salient pixels in the final convolution layer. We show that these pixels highlight features in particular images that in some cases are similar to those used to train humans to identify these species. Further, we used mutual information methods to identify the neurons in the final convolution layer that consistently respond most strongly across a set of images ofmore »
-
Obeid, I. (Ed.)The Neural Engineering Data Consortium (NEDC) is developing the Temple University Digital Pathology Corpus (TUDP), an open source database of high-resolution images from scanned pathology samples [1], as part of its National Science Foundation-funded Major Research Instrumentation grant titled “MRI: High Performance Digital Pathology Using Big Data and Machine Learning” [2]. The long-term goal of this project is to release one million images. We have currently scanned over 100,000 images and are in the process of annotating breast tissue data for our first official corpus release, v1.0.0. This release contains 3,505 annotated images of breast tissue including 74 patients with cancerous diagnoses (out of a total of 296 patients). In this poster, we will present an analysis of this corpus and discuss the challenges we have faced in efficiently producing high quality annotations of breast tissue. It is well known that state of the art algorithms in machine learning require vast amounts of data. Fields such as speech recognition [3], image recognition [4] and text processing [5] are able to deliver impressive performance with complex deep learning models because they have developed large corpora to support training of extremely high-dimensional models (e.g., billions of parameters). Other fields that do notmore »
-
Abstract The CCERS partnership includes collaborators from universities, foundations, education departments, community organizations, and cultural institutions to build a new curriculum. As reported in a study conducted by the Rand Corporation (2011), partnerships among districts, community-based organizations, government agencies, local funders, and others can strengthen learning programs. The curriculum merged project-based learning and Bybee’s 5E model (Note 1) to teach core STEM-C concepts to urban middle school students through restoration science. CCERS has five interrelated and complementary programmatic pillars (see details in the next section). The CCERS curriculum encourages urban middle school students to explore and participate in project-based learning activities restoring the oyster population in and around New York Harbor. In Melaville, Berg and Blank’s Community Based Learning (2001) there is a statement that says, “Education must connect subject matter with the places where students live and the issues that affect us all”. Lessons engage students and teachers in long-term restoration ecology and environmental monitoring projects with STEM professionals and citizen scientists. In brief, partners have created curriculums for both in-school and out-of-school learning programs, an online platform for educators and students to collaborate, and exhibits with community partners to reinforce and extend both the educators’ and their students’more »
-
1. Camera trap technology has galvanized the study of predator-prey ecology in wild animal communities by expanding the scale and diversity of predator-prey interactions that can be analyzed. While observational data from systematic camera arrays have informed inferences on the spatiotemporal outcomes of predator-prey interactions, the capacity for observational studies to identify mechanistic drivers of species interactions is limited. 2. Experimental study designs that utilize camera traps uniquely allow for testing hypothesized mechanisms that drive predator and prey behavior, incorporating environmental realism not possible in the lab while benefiting from the distinct capacity of camera traps to generate large data sets from multiple species with minimal observer interference. However, such pairings of camera traps with experimental methods remain underutilized. 3. We review recent advances in the experimental application of camera traps to investigate fundamental mechanisms underlying predator-prey ecology and present a conceptual guide for designing experimental camera trap studies. 4. Only 9% of camera trap studies on predator-prey ecology in our review mention experimental methods, but the application of experimental approaches is increasing. To illustrate the utility of camera trap-based experiments using a case study, we propose a study design that integrates observational and experimental techniques to test a perennialmore »