The all-solid-state battery is a promising alternative to conventional lithium-ion batteries that have reached the limit of their technological capabilities. The next-generation lithium-ion batteries are expected to be eco-friendly, long-lasting, and safe while demonstrating high energy density and providing ultrafast charging. These much-needed properties require significant efforts to uncover and utilize the chemical, morphological, and electrochemical properties of solid-state electrolytes and cathode nanocomposites. Here we report solid-state electrochemical cells based on lithium oxyhalide electrolyte that is produced by melt-casting. This method results in enhanced cathode/electrolyte interfaces that allow exceptionally high charging rates (>4000C) while maintaining the electrochemical stability of solid-state electrolyte in the presence of lithium metal anode and lithium iron phosphate-based cathode. The cells exhibit long cycle life (>1800 cycles at 100 °C) and offer a promising route to the next-generation all-solid-state battery technology.
more »
« less
This content will become publicly available on December 1, 2025
Electrochemical Mechanism Underlying Lithium Plating in Batteries: Non-Invasive Detection and Mitigation
Efficient, sustainable, safe, and portable energy storage technologies are required to reduce global dependence on fossil fuels. Lithium-ion batteries satisfy the need for reliability, high energy density, and power density in electrical transportation. Despite these advantages, lithium plating, i.e., the accumulation of metallic lithium on the graphite anode surface during rapid charging or at low temperatures, is an insidious failure mechanism that limits battery performance. Lithium plating significantly shortens the battery’s life and rapidly reduces capacity, limiting the widespread adoption of electrical vehicles. When lithium plating is extreme, it can develop lithium dendrites, which may pass through the separator and lead to an internal short circuit and the subsequent thermal runaway damage of the cell. Over the last two decades, a large number of published studies have focused on understanding the mechanisms underlying lithium plating and on approaches to mitigate its harmful effects. Nevertheless, the physics underlying lithium plating still needs to be clarified. There is a lack of real-time techniques to accurately detect and quantify lithium plating. Real-time detection is essential for alleviating lithium plating-induced failure modes. Several strategies have been explored to minimize plating and its effect on battery life and safety, such as electrolyte design, anode structure design, and hybridized charging protocol design. We summarize the current developments and the different reported hypotheses regarding plating mechanisms, the influence of environmental and electrochemical conditions on plating, recent developments in electrochemical detection methods and their potential for real-time detection, and plating mitigation techniques. The advantages and concerns associated with different electrochemical detection and mitigation techniques are also highlighted. Lastly, we discuss outstanding technical issues and possible future research directions to encourage the development of novel ideas and methods to prevent lithium plating.
more »
« less
- Award ID(s):
- 2203990
- PAR ID:
- 10615623
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Energies
- Volume:
- 17
- Issue:
- 23
- ISSN:
- 1996-1073
- Page Range / eLocation ID:
- 5930
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Fast charging of lithium-ion batteries is crucial to increase desirability for consumers and hence accelerate the adoption of electric vehicles. A major barrier to shorter charge times is the accelerated aging of the battery at higher charging rates, which can be driven by lithium plating, increased solid electrolyte interphase growth due to elevated temperatures, and particle cracking due to mechanical stress. Lithium plating depends on the overpotential of the negative electrode, and mechanical stress depends on the concentration gradient, both of which cannot be measured directly. Techniques based on physics-based models of the battery and optimal control algorithms have been developed to this end. While these methods show promise in reducing degradation, their optimization algorithms' complexity can limit their implementation. In this paper, we present a method based on the constant current constant voltage (CC-CV) charging scheme, called CC-CVησT (VEST). The new approach is simpler to implement and can be used with any model to impose varying levels of constraints on variables pertinent to degradation, such as plating potential and mechanical stress. We demonstrate the new CC-CVησT charging using an electrochemical model with mechanical and thermal effects included. Furthermore, we discuss how uncertainties can be accounted for by considering safety margins for the plating and stress constraints.more » « less
-
Abstract A vertically aligned carbon nanofiber (VACNF) array with unique conically stacked graphitic structure directly grown on a planar Cu current collector (denoted as VACNF/Cu) is used as a high‐porosity 3D host to overcome the commonly encountered issues of Li metal anodes. The excellent electrical conductivity and highly active lithiophilic graphitic edge sites facilitate homogenous coaxial Li plating/stripping around each VACNF and forming a uniform solid electrolyte interphase. The high specific surface area effectively reduces the local current density and suppresses dendrite growth during the charging/discharging processes. Meanwhile, this open nanoscale vertical 3D structure eliminates the volume changes during Li plating/stripping. As a result, highly reversible Li plating/stripping with high coulombic efficiency is achieved at various current densities. A low voltage hysteresis of 35 mV over 500 h in symmetric cells is achieved at 1 mA cm−2with an areal Li plating capacity of 2 mAh cm−2, which is far superior to the planar Cu current collector. Furthermore, a Li–S battery using a S@PAN cathode and a lithium‐plated VACNF/Cu (VACNF/Cu@Li) anode with slightly higher capacity (2 mAh cm−2) exhibits an excellent rate capability and high cycling stability with no capacity fading over 600 cycles.more » « less
-
Electrochemical energy storage is a cost-effective, sustainable method for storing and delivering energy gener- ated from renewable resources. Among electrochemical energy storage devices, the lithium-ion battery (LIB) has dominated due to its high energy and power density. The success of LIBs has generated increased interest in sodium-ion battery (NaB) technology amid concerns of the sustainability and cost of lithium resources. In recent years, numerous studies have shown that sodium-ion solid-state electrolytes (NaSEs) have considerable potential to enable new cell chemistries that can deliver superior electrochemical performance to liquid-electrolyte-based NaBs. However, their commercial implementation is hindered by slow ionic transport at ambient and chemical/ mechanical incompatibility at interfaces. In this review, various NaSEs are first characterized based on individual crystal structures and ionic conduction mechanisms. Subsequently, selected methods of modifying interfaces in sodium solid-state batteries (NaSSBs) are covered, including anode wetting, ionic liquid (IL) addition, and composite polymer electrolytes (CPEs). Finally, examples are provided of how these techniques improve cycle life and rate performance of different cathode materials including sulfur, oxide, hexacyanoferrate, and phosphate-type. A focus on interfacial modification and optimization is crucial for realizing next-generation batteries. Thus, the novel methods reviewed here could pave the way toward a NaSSB capable of with- standing the high current and cycle life demands of future applications.more » « less
-
Abstract Silicon is regarded as one of the most promising anode materials for lithium-ion batteries. Its high theoretical capacity (4000 mAh/g) has the potential to meet the demands of high-energy density applications, such as electric air and ground vehicles. The volume expansion of Si during lithiation is over 300%, indicating its promise as a large strain electrochemical actuator. A Si-anode battery is multifunctional, storing electrical energy and actuating through volume change by lithium-ion insertion. To utilize the property of large volume expansion, we design, fabricate, and test two types of Si anode cantilevers with bi-directional actuation: (a) bimorph actuator and (b) insulated double unimorph actuator. A transparent battery chamber is fabricated, provided with NCM cathodes, and filled with electrolyte. The relationship between state of charge and electrode deformation is measured using current integration and high-resolution photogrammetry, respectively. The electrochemical performance, including voltage versus capacity and Coulombic efficiency versus cycle number, is measured for several charge/discharge cycles. Both configurations exhibit deflections in two directions and can store energy. In case (a), the largest deflection is roughly 35% of the cantilever length. Twisting and unexpected bending deflections are observed in this case, possibly due to back-side lithiation, non-uniform coating thickness, and uneven lithium distribution. In case (b), the single silicon active coating layer can deflect 12 passive layers.more » « less
An official website of the United States government
