skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamic Knowledge Graph Alignment
Knowledge graph (KG for short) alignment aims at building a complete KG by linking the shared entities across complementary KGs. Existing approaches assume that KGs are static, despite the fact that almost every KG evolves over time. In this paper, we introduce the task of dynamic knowledge graph alignment, the main challenge of which is how to efficiently update entity embeddings for the evolving graph topology. Our key insight is to view the parameter matrix of GCN as a feature transformation operator and decouple the transformation process from the aggregation process. Based on that, we first propose a novel base algorithm (DINGAL-B) with topology-invariant mask gate and highway gate, which consistently outperforms 14 existing knowledge graph alignment methods in the static setting. More importantly, it naturally leads to two effective and efficient algorithms to align dynamic knowledge graph, including (1) DINGAL-O which leverages previous parameter matrices to update the embeddings of affected entities; and (2) DINGAL-U which resorts to newly obtained anchor links to fine-tune parameter matrices. Compared with their static counterpart (DINGAL-B), DINGAL-U and DINGAL-O are 10× and 100× faster respectively, with little alignment accuracy loss.  more » « less
Award ID(s):
1939725 1947135
PAR ID:
10299095
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
ISSN:
2159-5399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Knowledge graphs (KGs) capture knowledge in the form of head– relation–tail triples and are a crucial component in many AI systems. There are two important reasoning tasks on KGs: (1) single-hop knowledge graph completion, which involves predicting individual links in the KG; and (2), multi-hop reasoning, where the goal is to predict which KG entities satisfy a given logical query. Embedding-based methods solve both tasks by first computing an embedding for each entity and relation, then using them to form predictions. However, existing scalable KG embedding frameworks only support single-hop knowledge graph completion and cannot be applied to the more challenging multi-hop reasoning task. Here we present Scalable Multi-hOp REasoning (SMORE), the first general framework for both single-hop and multi-hop reasoning in KGs. Using a single machine SMORE can perform multi-hop reasoning in Freebase KG (86M entities, 338M edges), which is 1,500× larger than previously considered KGs. The key to SMORE’s runtime performance is a novel bidirectional rejection sampling that achieves a square root reduction of the complexity of online training data generation. Furthermore, SMORE exploits asynchronous scheduling, overlapping CPU-based data sampling, GPU-based embedding computation, and frequent CPU–GPU IO. SMORE increases throughput (i.e., training speed) over prior multi-hop KG frameworks by 2.2× with minimal GPU memory requirements (2GB for training 400-dim embeddings on 86M-node Freebase) and achieves near linear speed-up with the number of GPUs. Moreover, on the simpler single-hop knowledge graph completion task SMORE achieves comparable or even better runtime performance to state-of-the-art frameworks on both single GPU and multi-GPU settings. 
    more » « less
  2. Knowledge Graphs (KGs) have been applied to many tasks including Web search, link prediction, recommendation, natural language processing, and entity linking. However, most KGs are far from complete and are growing at a rapid pace. To address these problems, Knowledge Graph Completion (KGC) has been proposed to improve KGs by filling in its missing connections. Unlike existing methods which hold a closed-world assumption, i.e., where KGs are fixed and new entities cannot be easily added, in the present work we relax this assumption and propose a new open-world KGC task. As a first attempt to solve this task we introduce an open-world KGC model called ConMask. This model learns embeddings of the entity's name and parts of its text-description to connect unseen entities to the KG. To mitigate the presence of noisy text descriptions, ConMask uses a relationship-dependent content masking to extract relevant snippets and then trains a fully convolutional neural network to fuse the extracted snippets with entities in the KG. Experiments on large data sets, both old and new, show that ConMask performs well in the open-world KGC task and even outperforms existing KGC models on the standard closed-world KGC task. 
    more » « less
  3. Knowledge graph embeddings (KGE) have been extensively studied to embed large-scale relational data for many real-world applications. Existing methods have long ignored the fact many KGs contain two fundamentally different views: high-level ontology-view concepts and fine-grained instance-view entities. They usually embed all nodes as vectors in one latent space. However, a single geometric representation fails to capture the structural differences between two views and lacks probabilistic semantics towards concepts’ granularity. We propose Concept2Box, a novel approach that jointly embeds the two views of a KG using dual geometric representations. We model concepts with box embeddings, which learn the hierarchy structure and complex relations such as overlap and disjoint among them. Box volumes can be interpreted as concepts’ granularity. Different from concepts, we model entities as vectors. To bridge the gap between concept box embeddings and entity vector embeddings, we propose a novel vector-to-box distance metric and learn both embeddings jointly. Experiments on both the public DBpedia KG and a newly-created industrial KG showed the effectiveness of Concept2Box. 
    more » « less
  4. Representing knowledge graphs (KGs) by learning embeddings for entities and relations has led to accurate models for existing KG completion benchmarks. However, due to the open-world assumption of existing KGs, evaluation of KG completion uses ranking metrics and triple classification with negative samples, and is thus unable to directly assess models on the goals of the task: completion. In this paper, we first study the shortcomings of these evaluation metrics. Specifically, we demonstrate that these metrics (1) are unreliable for estimating how calibrated the models are, (2) make strong assumptions that are often violated, and 3) do not sufficiently, and consistently, differentiate embedding methods from each other, or from simpler approaches. To address these issues, we gather a semi-complete KG referred as YAGO3-TC, using a random subgraph from the test and validation data of YAGO3-10, which enables us to compute accurate triple classification accuracy on this data. Conducting thorough experiments on existing models, we provide new insights and directions for the KG completion research. Along with the dataset and the open source implementation of the models, we also provide a leaderboard for knowledge graph completion that consists of a hidden, and growing, test set, available at https://pouyapez.github.io/yago3-tc/. 
    more » « less
  5. One of the fundamental problems in Artificial Intelligence is to perform complex multi-hop logical reasoning over the facts captured by a knowledge graph (KG). This problem is challenging, because KGs can be massive and incomplete. Recent approaches embed KG entities in a low dimensional space and then use these embeddings to find the answer entities. However, it has been an outstanding challenge of how to handle arbitrary first-order logic (FOL) queries as present methods are limited to only a subset of FOL operators. In particular, the negation operator is not supported. An additional limitation of present methods is also that they cannot naturally model uncertainty. Here, we present BETAE, a probabilistic embedding framework for answering arbitrary FOL queries over KGs. BETAE is the first method that can handle a complete set of first-order logical operations: conjunction (∧), disjunction (∨), and negation (¬). A key insight of BETAE is to use probabilistic distributions with bounded support, specifically the Beta distribution, and embed queries/entities as distributions, which as a consequence allows us to also faithfully model uncertainty. Logical operations are performed in the embedding space by neural operators over the probabilistic embeddings. We demonstrate the performance of BETAE on answering arbitrary FOL queries on three large, incomplete KGs. While being more general, BETAE also increases relative performance by up to 25.4% over the current state-of-the-art KG reasoning methods that can only handle conjunctive queries without negation. 
    more » « less