The commercially available polyelectrolyte complex poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is ubiquitous in organic and hybrid electronics. As such, it has often been used as a benchmark material for fundamental studies and the development of new electronic devices. Yet, most studies on PEDOT:PSS have focused on its electronic conductivity in dry environments, with less consideration given to its ion transport, coupled ionic-electronic transport, and charge storage properties in aqueous environments. These properties are essential for applications in bioelectronics (sensors, actuators), charge storage devices, and electrochromic displays. Importantly, past studies on mixed ionic-electronic transport in PEDOT:PSS neglected to consider how the molecular structure of PSS affects mixed ionic-electronic transport. Herein, we therefore investigated the effect of the molecular weight and size distribution of PSS on the electronic properties and morphology of PEDOT:PSS both in dry and aqueous environments, and overall performance in organic electrochemical transistors (OECTs). Using reversible addition–fragmentation chain transfer (RAFT) polymerization with two different chain transfer agents, six PSS samples with monomodal, narrow ( Đ = 1.1) and broad ( Đ = 1.7) size distributions and varying molecular weights were synthesized and used as matrices for PEDOT. We found that using higher molecular weight of PSS ( M n = 145more »
Self-Exchange of Polyelectrolyte in Multilayers: Diffusion as a Function of Salt Concentration and Temperature
Polymer chain diffusion within a hydrated polyelectrolyte complex, PEC, has been measured using an ultrathin film format prepared by the layer-by-layer method. Isotopically labeled self-exchange of deuterated poly(styrene sulfonate), dPSS, with undeuterated PSS of the same narrow molecular weight distribution permitted reliable estimates of whole-molecule diffusion coefficients, D. Narrow molecular weight distribution poly(diallyldimethylammonium), PDADMA, was used as the polycation for the PEC. Extensive pretreatment of starting films was undertaken to remove residual stress, anisotropy, and layering. PSS/PDADMA “multilayers,” PEMUs, thin enough to provide substantial exchange of polyelectrolyte, even with diffusion coefficients as low as 10–16 cm2 s–1, as a function of salt concentration and temperature were measured for this PEC, which has a glass-transition temperature, Tg, close to room temperature. Two molecular weights of dPSS, about 15 and 100 kDa, presumed to be below and above the entanglement molecular weight, respectively, both diffused faster at higher temperatures with respective activation energies, Ea, of about 21 and 53 kJ mol–1, the latter about the same as Ea for the place exchange between two pairs of PSS:PDADMA. Studies of the linear viscoelastic response of macroscopic PECs showed a difference of about 8 °C in the Tg of the two lengths of PSS more »
- Award ID(s):
- 1809304
- Publication Date:
- NSF-PAR ID:
- 10299142
- Journal Name:
- Macromolecules
- ISSN:
- 0024-9297
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Molecular ionic composites (MICs) are a new class of solid electrolytes that combine ionic liquids (ILs) and a rigid-rod double helical polyelectrolyte, poly(2,2′-disulfonyl-4,4′benzidine terephthalamide) (PBDT). In this study, we focus on the mechanical, dielectric, and ion diffusive dynamics of MICs with a fixed PBDT weight percent (10 wt%) and varying IL chemistry and molecular volume ( V m ). All six MICs produce tensile moduli in the range of 50–500 MPa at 30 °C, up to 60× higher than the shear moduli of the same MICs. The high range of moduli and tensile to shear modulus ratio emphasizes that the distribution of PBDT chains and the strong ionic interactions between IL ions and PBDT chains dictate the modulus and the mechanical strength in MICs. Additionally, these MICs exhibit high ionic conductivities ranging from 1–6 mS cm −1 at 30 °C, consistent with the measured diffusion coefficients of the IL ions. The tunability of the extraordinary mechanical properties and high ionic conductivities of MIC electrolytes greatly inspire their use in advanced electrochemical devices.
-
Organocatalyzed ring-opening polymerization (O-ROP) of a six-five bicyclic lactone, 4,5- trans -cyclohexyl-fused γ-butyrolactone (4,5-T6GBL), can be topologically selective or living at room temperature, depending on catalyst structure. A screening of (thio)urea [(T)U] and organic base pairs revealed unique trends in reactivity for this monomer as well as the most active catalyst pairs, which were employed as received commercially to produce relatively high molecular weight ( M n up to 106 kDa), low dispersity ( Đ = 1.04) linear poly(4,5-T6GBL) in a living fashion. The ROP using a hybrid organic/inorganic pair of TU/KOMe in neat conditions led to poly(4,5-T6GBL) with even higher molecular weight ( M n = 215 kDa, Đ = 1.04). In comparison to the metal-catalyzed system, (T)U-base pairs exhibited competitive kinetics and reached higher monomer conversions, and their reactions can be performed in air. In addition, the resulting polymers required less purification to produce materials with higher onset decomposition temperature. (T)U-base pairs were selective towards linear polymerization only, whereas triazabicyclodecene can catalyze both polymerization and (quantitative) depolymerization processes, depending on reaction conditions. Cyclic polymers with M n = 41–72 kDa were selectively formed via N-heterocyclic carbene-mediated zwitterionic O-ROP.
-
This work presents an energy efficient technique for fabricating flexible thermoelectric generators while using printable ink. We have fabricated thermoelectric composite thick films using two different mesh sizes of n-type bismuth particles, various binder to thermoelectric material weight ratios, and two different pressures, 200 MPa and 300 MPa, in order to optimize the thermoelectric properties of the composite films. The use of chitosan dissolved in dimethylsulfoxide with less than 0.2 wt. % of chitosan, the first time chitosan has been used in this process, was sufficient for fabricating TE inks and composite films. Low temperature curing processes, along with uniaxial pressure, were used to evaporate the solvent from the drop-casted inks. This combination reduced the temperature needed compared to traditional curing processes while simultaneously increasing the packing density of the film by removing the pores and voids in the chitosan-bismuth composite film. Microstructural analysis of the composite films reveals low amounts of voids and pores when pressed at sufficiently high pressures. The highest performing composite film was obtained with the weight ratio of 1:2000 binder to bismuth, 100-mesh particle size, and 300 MPa of pressure. The best performing bismuth chitosan composite film that was pressed at 300 MPa had amore »
-
Polypeptoids bearing carboxylic acid groups on the N -substituent are useful building blocks for the construction of peptidomimetic supramolecular assemblies with stimuli-responsive properties. Towards this end, N -(3- tert -butoxy-3-oxopropyl) glycine derived N -carboxyanhydride ( t BuO 2 Pr-NCA) has been successfully synthesized and polymerized using primary amine initiators to produce the corresponding poly( N -(3- tert -butoxy-3-oxopropyl) glycine) with molecular weights ( M n ) of 5.6–59 kg mol −1 and a narrow molecular weight distribution (PDI = 1.003–1.026). The polymerization was shown to proceed in a controlled manner, evidenced by the good agreement of the experimental molecular weight ( M n ) with theoretical values and narrow molecular weight distribution in a wide range of monomer-to-initiator ratios ([M] 0 : [I] 0 = 25 : 1–200 : 1), the linear increase of M n with conversion and the second-order polymerization kinetics. The cloaked carboxyl groups on the poly( N -(3- tert -butoxy-3-oxopropyl) glycine) can be readily unveiled in mild acidic conditions to yield the poly( N -(2-carboxyethyl) glycine), a structural mimic of poly(glutamic acid). The poly( N -(2-carboxyethyl) glycine) polymer is a weak polyelectrolyte whose hydrodynamic size in water can be controlled by the solution pH.