skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impacts of COVID-19 lockdowns and stimulus payments on low-income population’s spending in the United States
The COVID-19 pandemic has profoundly impacted the economy and human lives worldwide, particularly the vulnerable low-income population. We employ a large panel data of 5.6 million daily transactions from 2.6 million debit cards owned by the low-income population in the U.S. to quantify the joint impacts of the state lockdowns and stimulus payments on this population’s spending along the inter-temporal, geo-spatial, and cross-categorical dimensions. Leveraging the difference-in-differences analyses at the per card and zip code levels, we uncover three key findings. (1) Inter-temporally, the state lockdowns diminished the daily average spending relative to the same period in 2019 by $3.9 per card and $2,214 per zip code, whereas the stimulus payments elevated the daily average spending by $15.7 per card and $3,307 per zip code. (2) Spatial heterogeneity prevailed: Democratic zip codes displayed much more volatile dynamics, with an initial decline three times that of Republican zip codes, followed by a higher rebound and a net gain after the stimulus payments; also, Southwest exhibited the highest initial decline whereas Southeast had the largest net gain after the stimulus payments. (3) Across 26 categories, the stimulus payments promoted spending in those categories that enhanced public health and charitable donations, reduced food insecurity and digital divide, while having also stimulated non-essential and even undesirable categories, such as liquor and cigar. In addition, spatial association analysis was employed to identify spatial dependency and local hot spots of spending changes at the county level. Overall, these analyses reveal the imperative need for more geo- and category-targeted stimulus programs, as well as more effective and strategic policy communications, to protect and promote the well-being of the low-income population during public health and economic crises.  more » « less
Award ID(s):
2027375
PAR ID:
10299149
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Yang, Chaowei
Date Published:
Journal Name:
PLOS ONE
Volume:
16
Issue:
9
ISSN:
1932-6203
Page Range / eLocation ID:
e0256407
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The objective of this study is to examine spatial patterns of disaster impacts and recovery of communities based on fluctuations in credit card transactions (CCTs). Such fluctuations could capture the collective effects of household impacts, disrupted accesses, and business closures and thus provide an integrative measure for examining disaster impacts and community recovery. Existing studies depend mainly on survey and sociodemographic data for disaster impacts and recovery effort evaluations, although such data has limitations, including large data collection efforts and delayed timeliness results. Also, there are very few studies have concentrated on spatial patterns of disaster impacts and short-term recovery of communities, although such investigation can enhance situational awareness during disasters and support the identification of disparate spatial patterns of disaster impacts and recovery in the impacted regions. This study examines CCTs data Harris County (Texas, USA) during Hurricane Harvey in 2017 to explore spatial patterns of disaster impacts and recovery duration from the perspective of community residents and businesses at ZIP-code and county scales, respectively, and to further investigate their spatial disparities across ZIP codes. The results indicate that individuals in ZIP codes with populations of higher income experienced more severe disaster impact and recovered more quickly than those located in lower income ZIP codes for most business sectors. Our findings not only enhance the understanding of spatial patterns and disparities in disaster impacts and recovery for better community resilience assessment but also could benefit emergency managers, city planners, and public officials in enhanced situational awareness and resource allocation. 
    more » « less
  2. Abstract Non-pharmacologic interventions (NPIs) promote protective actions to lessen exposure risk to COVID-19 by reducing mobility patterns. However, there is a limited understanding of the underlying mechanisms associated with reducing mobility patterns especially for socially vulnerable populations. The research examines two datasets at a granular scale for five urban locations. Through exploratory analysis of networks, statistics, and spatial clustering, the research extensively investigates the exposure risk reduction after the implementation of NPIs to socially vulnerable populations, specifically lower income and non-white populations. The mobility dataset tracks population movement across ZIP codes for an origin–destination (O–D) network analysis. The population activity dataset uses the visits from census block groups (cbg) to points-of-interest (POIs) for network analysis of population-facilities interactions. The mobility dataset originates from a collaboration with StreetLight Data, a company focusing on transportation analytics, whereas the population activity dataset originates from a collaboration with SafeGraph, a company focusing on POI data. Both datasets indicated that low-income and non-white populations faced higher exposure risk. These findings can assist emergency planners and public health officials in comprehending how different populations are able to implement protective actions and it can inform more equitable and data-driven NPI policies for future epidemics. 
    more » « less
  3. During COVID-19 lockdowns, transit agencies need to respond to the decline in travel but also maintain the essential mobility of transit-dependent people. However, there are a few lessons that scholars and practitioners can learn from. Using highway traffic data in the Twin Cities, this study applies a generalized additive model to explore the relationships among the share of low-income population, transit service, and highway traffic during the week that occurred right after the 2020 stay-at-home order. Our results substantiate that transportation impacts are spread unevenly across different income groups and low-income people are less able to reduce travel, leading to equity concerns. Moreover, transit supply influences highway traffic differently in areas with different shares of low-income people. Our study suggests that transportation agencies should provide more affordable travel options for areas with concentrated poverty during lockdowns. In addition, transit agencies should manage transit supply strategically depending on the share of low-income people to better meet people’s mobility needs. 
    more » « less
  4. Abstract The COVID-19 pandemic has stimulated important changes in online information access as digital engagement became necessary to meet the demand for health, economic, and educational resources. Our analysis of 55 billion everyday web search interactions during the pandemic across 25,150 US ZIP codes reveals that the extent to which different communities of internet users enlist digital resources varies based on socioeconomic and environmental factors. For example, we find that ZIP codes with lower income intensified their access to health information to a smaller extent than ZIP codes with higher income. We show that ZIP codes with higher proportions of Black or Hispanic residents intensified their access to unemployment resources to a greater extent, while revealing patterns of unemployment site visits unseen by the claims data. Such differences frame important questions on the relationship between differential information search behaviors and the downstream real-world implications on more and less advantaged populations. 
    more » « less
  5. Background Understanding community transmission of SARS-CoV-2 variants of concern (VOCs) is critical for disease control in the post pandemic era. The Delta variant (B.1.617.2) emerged in late 2020 and became the dominant VOC globally in the summer of 2021. While the epidemiological features of the Delta variant have been extensively studied, how those characteristics shaped community transmission in urban settings remains poorly understood. Methods Using high-resolution contact tracing data and testing records, we analyze the transmission of SARS-CoV-2 during the Delta wave within New York City (NYC) from May 2021 to October 2021. We reconstruct transmission networks at the individual level and across 177 ZIP code areas, examine network structure and spatial spread patterns, and use statistical analysis to estimate the effects of factors associated with COVID-19 spread. Results We find considerable individual variations in reported contacts and secondary infections, consistent with the pre-Delta period. Compared with earlier waves, Delta-period has more frequent long-range transmission events across ZIP codes. Using socioeconomic, mobility and COVID-19 surveillance data at the ZIP code level, we find that a larger number of cumulative cases in a ZIP code area is associated with reduced within- and cross-ZIP code transmission and the number of visitors to each ZIP code is positively associated with the number of non-household infections identified through contact tracing and testing. Conclusions The Delta variant produced greater long-range spatial transmission across NYC ZIP code areas, likely caused by its increased transmissibility and elevated human mobility during the study period. Our findings highlight the potential role of population immunity in reducing transmission of VOCs. Quantifying variability of immunity is critical for identifying subpopulations susceptible to future VOCs. In addition, non-pharmaceutical interventions limiting human mobility likely reduced SARS-CoV-2 spread over successive pandemic waves and should be encouraged for reducing transmission of future VOCs. 
    more » « less