skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Dissolution Rate of CaCO 3 in the Ocean
The dissolution of CaCO 3 minerals in the ocean is a fundamental part of the marine alkalinity and carbon cycles. While there have been decades of work aimed at deriving the relationship between dissolution rate and mineral saturation state (a so-called rate law), no real consensus has been reached. There are disagreements between laboratory- and field-based studies and differences in rates for inorganic and biogenic materials. Rates based on measurements on suspended particles do not always agree with rates inferred from measurements made near the sediment–water interface of the actual ocean. By contrast, the freshwater dissolution rate of calcite has been well described by bulk rate measurements from a number of different laboratories, fit by basic kinetic theory, and well studied by atomic force microscopy and vertical scanning interferometry to document the processes at the atomic scale. In this review, we try to better unify our understanding of carbonate dissolution in the ocean via a relatively new, highly sensitive method we have developed combined with a theoretical framework guided by the success of the freshwater studies. We show that empirical curve fits of seawater data as a function of saturation state do not agree, largely because the curvature is itself a function of the thermodynamics. Instead, we show that models that consider both surface energetic theory and the complicated speciation of seawater and calcite surfaces in seawater are able to explain most of the most recent data.This new framework can also explain features of the historical data that have not been previously explained. The existence of a kink in the relationship between rate and saturation state, reflecting a change in dissolution mechanism, may be playing an important role in accelerating CaCO 3 dissolution in key sedimentary environments.  more » « less
Award ID(s):
1834475
PAR ID:
10299275
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Annual Review of Marine Science
Volume:
13
Issue:
1
ISSN:
1941-1405
Page Range / eLocation ID:
57 to 80
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The cycling of biologically produced calcium carbonate (CaCO3) in the ocean is a fundamental component of the global carbon cycle. Here, we present experimental determinations of in situ coccolith and foraminiferal calcite dissolution rates. We combine these rates with solid phase fluxes, dissolved tracers, and historical data to constrain the alkalinity cycle in the shallow North Pacific Ocean. The in situ dissolution rates of coccolithophores demonstrate a nonlinear dependence on saturation state. Dissolution rates of all three major calcifying groups (coccoliths, foraminifera, and aragonitic pteropods) are too slow to explain the patterns of both CaCO3sinking flux and alkalinity regeneration in the North Pacific. Using a combination of dissolved and solid‐phase tracers, we document a significant dissolution signal in seawater supersaturated for calcite. Driving CaCO3dissolution with a combination of ambient saturation state and oxygen consumption simultaneously explains solid‐phase CaCO3flux profiles and patterns of alkalinity regeneration across the entire N. Pacific basin. We do not need to invoke the presence of carbonate phases with higher solubilities. Instead, biomineralization and metabolic processes intimately associate the acid (CO2) and the base (CaCO3) in the same particles, driving the coupled shallow remineralization of organic carbon and CaCO3. The linkage of these processes likely occurs through a combination of dissolution due to zooplankton grazing and microbial aerobic respiration within degrading particle aggregates. The coupling of these cycles acts as a major filter on the export of both organic and inorganic carbon to the deep ocean. 
    more » « less
  2. Abstract The enzyme carbonic anhydrase (CA) is crucial to many physiological processes involvingCO2, from photosynthesis and respiration, to calcification andCaCO3dissolution. We present new measurements of CA activity along a North Pacific transect, on samples from in situ pumps, sediment traps, discreet plankton samples from the ship's underway seawater line, plankton tows, and surface sediment samples from multicores. CA activity is highest in the surface ocean and decreases with depth, both in suspended and sinking particles. Subpolar gyre surface particles exhibit 10× higher CA activity per liter of seawater compared to subtropical gyre surface particles. Activity persists to 4700 m in the subpolar gyre, but only to 1000 m in the subtropics. All sinking CA activity normalized to particulate organic carbon (POC) follows a single relationship (CA/POC = 1.9 ± 0.2 × 10−7mol mol−1). This relationship is consistent with CA/POC values in subpolar plankton tow material, suspended particles, and core top sediments. We hypothesize that most subpolar CA activity is associated with rapidly sinking diatom blooms, consistent with a large mat of diatomaceous material identified on the seafloor. Compared to the basin‐wide sinking CA/POC relationship, a lower subtropical CA/POC suggests that the inventory of subtropical biomass is different in composition from exported material. Pteropods also demonstrate substantial CA activity. Scaled to the volume within pteropod shells, first‐orderCO2hydration rate constants are elevated ≥ 1000× above background. This kinetic enhancement is large enough to catalyze carbonate dissolution within microenvironments, providing observational evidence for CA‐catalyzed, respiration‐drivenCaCO3dissolution in the shallow North Pacific. 
    more » « less
  3. Abstract Foraminifera are unicellular organisms that inhabit the oceans. They play an important role in the global carbon cycle and record valuable paleoclimate information through the uptake of trace elements such as strontium into their calcitic shells. Understanding how foraminifera control their internal fluid composition to make calcite is important for predicting their response to ocean acidification and for reliably interpreting the chemical and isotopic compositions of their shells. Here, we model foraminiferal calcification and strontium partitioning in the benthic foraminiferaCibicides wuellerstorfiandCibicidoides mundulusbased on insights from inorganic calcite experiments. The numerical model reconciles inter-ocean and taxonomic differences in benthic foraminifer strontium partitioning relationships and enables us to reconstruct the composition of the calcifying fluid. We find that strontium partitioning and mineral growth rates of foraminiferal calcite are not strongly affected by changes in external seawater pH (within 7.8–8.1) and dissolved inorganic carbon (DIC, within 2100–2300 μmol/kg) due to a regulated calcite saturation state at the site of shell formation. 
    more » « less
  4. Abstract Planktonic calcifying organisms play a key role in regulating ocean carbonate chemistry and atmospheric CO2. Surprisingly, references to the absolute and relative contribution of these organisms to calcium carbonate production are lacking. Here we report quantification of pelagic calcium carbonate production in the North Pacific, providing new insights on the contribution of the three main planktonic calcifying groups. Our results show that coccolithophores dominate the living calcium carbonate (CaCO3) standing stock, with coccolithophore calcite comprising ~90% of total CaCO3production, and pteropods and foraminifera playing a secondary role. We show that pelagic CaCO3production is higher than the sinking flux of CaCO3at 150 and 200 m at ocean stations ALOHA and PAPA, implying that a large portion of pelagic calcium carbonate is remineralised within the photic zone; this extensive shallow dissolution explains the apparent discrepancy between previous estimates of CaCO3production derived from satellite observations/biogeochemical modeling versus estimates from shallow sediment traps. We suggest future changes in the CaCO3cycle and its impact on atmospheric CO2will largely depend on how the poorly-understood processes that determine whether CaCO3is remineralised in the photic zone or exported to depth respond to anthropogenic warming and acidification. 
    more » « less
  5. Abstract Corals nucleate and grow aragonite crystals, organizing them into intricate skeletal structures that ultimately build the world’s coral reefs. Crystallography and chemistry have profound influence on the material properties of these skeletal building blocks, yet gaps remain in our knowledge about coral aragonite on the atomic scale. Across a broad diversity of shallow-water and deep-sea scleractinian corals from vastly different environments, coral aragonites are remarkably similar to one another, confirming that corals exert control on the carbonate chemistry of the calcifying space relative to the surrounding seawater. Nuances in coral aragonite structures relate most closely to trace element chemistry and aragonite saturation state, suggesting the primary controls on aragonite structure are ionic strength and trace element chemistry, with growth rate playing a secondary role. We also show how coral aragonites are crystallographically indistinguishable from synthetic abiogenic aragonite analogs precipitated from seawater under conditions mimicking coral calcifying fluid. In contrast, coral aragonites are distinct from geologically formed aragonites, a synthetic aragonite precipitated from a freshwater solution, and mollusk aragonites. Crystallographic signatures have future applications in understanding the material properties of coral aragonite and predicting the persistence of coral reefs in a rapidly changing ocean. 
    more » « less