skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeled foraminiferal calcification and strontium partitioning in benthic foraminifera helps reconstruct calcifying fluid composition
Abstract Foraminifera are unicellular organisms that inhabit the oceans. They play an important role in the global carbon cycle and record valuable paleoclimate information through the uptake of trace elements such as strontium into their calcitic shells. Understanding how foraminifera control their internal fluid composition to make calcite is important for predicting their response to ocean acidification and for reliably interpreting the chemical and isotopic compositions of their shells. Here, we model foraminiferal calcification and strontium partitioning in the benthic foraminiferaCibicides wuellerstorfiandCibicidoides mundulusbased on insights from inorganic calcite experiments. The numerical model reconciles inter-ocean and taxonomic differences in benthic foraminifer strontium partitioning relationships and enables us to reconstruct the composition of the calcifying fluid. We find that strontium partitioning and mineral growth rates of foraminiferal calcite are not strongly affected by changes in external seawater pH (within 7.8–8.1) and dissolved inorganic carbon (DIC, within 2100–2300 μmol/kg) due to a regulated calcite saturation state at the site of shell formation.  more » « less
Award ID(s):
1749183
PAR ID:
10485599
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
5
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Geochemical records generated from the calcite tests of benthic foraminifera, especially those of the generaCibicidoidesandUvigerina, provide the basis for proxy reconstructions of past climate. However, the extent to which benthic foraminifera are affected by postdepositional alteration is poorly constrained. Furthermore, how diagenesis may alter the geochemical composition of benthic foraminiferal tests, and thereby biasing a variety of proxy‐based climate records, is also poorly constrained. We present the Foraminiferal Preservation Index (FPI) as a new metric to quantify preservation quality based on objective, well‐defined criteria. The FPI is used to identify and quantify trends in diagenesis temporally, from late Pliocene to modern coretop samples (3.3–0 Ma), as well as spatially in the deep ocean. The FPI identifies the chemical composition of deep‐ocean water masses to be the primary driver of diagenesis through time, while also serving as a supplementary method of identifying periods of changing water mass influence at a given site. Additionally, we present stable isotope data (δ18O, δ13C) generated from individualCibicidoidesspecimens of various preservation quality that demonstrate the likelihood of significant biasing in a variety of geochemical proxy records, especially those used to reconstruct past changes in ice volume and sea level. These single‐test data further demonstrate that when incorporating carefully selected tests of only the highest preservation quality, robust paleorecords can be generated. 
    more » « less
  2. Geochemical records generated from the calcite shells (tests) of benthic foraminifera, especially those of the genera Cibicidoides and Uvigerina, provide the basis of the majority of long-term climate records in a variety of proxy reconstructions. However, the extent to which benthic foraminifera are affected by post-depositional alteration is poorly constrained in the literature. Furthermore, how diagenesis may alter the geochemical composition of benthic foraminiferal tests, and thereby biasing a variety of proxy-based climate records, is also poorly constrained. We present the Foraminiferal Preservation Index (FPI) as a new metric to quantify preservation quality based on objective, well-defined criteria. The FPI is used to identify and quantify trends in diagenesis temporally, from modern coretop samples to the Mid-Pliocene Warm Period (0.0-3.3 million year ago), and spacially in the deep ocean. The FPI identifies the chemical composition of deep ocean water masses to be the primary driver of diagenesis through time, while also serving as a supplementary method of identifying periods of changing water mass influence at a given site through time. Additionally, we present stable isotope data (d18O, d13C) generated from individual Cibicidoides tests of various preservation quality that demonstrate the likelihood of significant biasing in a variety of geochemical proxy records, especially those used to reconstruct past changes in ice volume and sea level. These single-test data also demonstrate the robustness of paleorecords generated from carefully selected specimens of only the highest quality of preservation. 
    more » « less
  3. Geochemical records generated from the calcite shells (tests) of benthic foraminifera, especially those of the genera Cibicidoides and Uvigerina, provide the basis of the majority of long-term climate records in a variety of proxy reconstructions. However, the extent to which benthic foraminifera are affected by post-depositional alteration is poorly constrained in the literature. Furthermore, how diagenesis may alter the geochemical composition of benthic foraminiferal tests, and thereby biasing a variety of proxy-based climate records, is also poorly constrained. We present the Foraminiferal Preservation Index (FPI) as a new metric to quantify preservation quality based on objective, well-defined criteria. The FPI is used to identify and quantify trends in diagenesis temporally, from modern coretop samples to the Mid-Pliocene Warm Period (0.0-3.3 million year ago), and spacially in the deep ocean. The FPI identifies the chemical composition of deep ocean water masses to be the primary driver of diagenesis through time, while also serving as a supplementary method of identifying periods of changing water mass influence at a given site through time. Additionally, we present stable isotope data (d18O, d13C) generated from individual Cibicidoides tests of various preservation quality that demonstrate the likelihood of significant biasing in a variety of geochemical proxy records, especially those used to reconstruct past changes in ice volume and sea level. These single-test data also demonstrate the robustness of paleorecords generated from carefully selected specimens of only the highest quality of preservation. 
    more » « less
  4. The sulfur over calcium ratio (S/Ca) in foraminiferal shells was recently proposed as a new and independent proxy for reconstructing marine inorganic carbon chemistry. This new approach assumes that sulfur is incorporated into CaCO3 predominantly in the form of sulfate (SO42−) through lattice substitution for carbonate ions (CO32–), and that S/Ca thus reflects seawater [CO32–]. Although foraminiferal growth experiments validated this approach, field studies showed controversial results suggesting that the potential impact of [CO32–] may be overwritten by one or more parameters. Hence, to better understand the inorganic processes involved, we here investigate S/Ca values in inorganically precipitated CaCO3 (S/Ca(cc)) grown in solutions of CaCl2 − Na2CO3 − Na2SO4 − B(OH)3 − MgCl2. Experimental results indicate the dependence of sulfate partitioning in CaCO3 on the carbon chemistry via changing pH and suggest that faster precipitation rates increase the partition coefficient for sulfur. The S/Ca ratios of our inorganic calcite samples show positive correlation with modelled [CaSO40](aq), but not with the concentration of free SO42− ions. This challenges the traditional model for sulfate incorporation in calcite and implies that the uptake of sulfate potentially occurs via ion-ion pairs rather than being incorporated as single anions. Based on the [Ca2+] dependence via speciation, we here suggest a critical evaluation of this potential proxy. As sulfate complexation seems to control sulfate uptake in inorganic calcite, application as a proxy using foraminiferal calcite may be limited to periods for which seawater chemistry is well-constrained. As foraminiferal calcite growth is modulated by inward Ca2+ flow to the site of calcification coupled to outward H+ pumping, sulfate incorporation as CaSO40 ion-pair in the foraminifer’s shell also provides a mechanistic link for the observed relationship between S/Ca(cc) and [CO32–]. 
    more » « less
  5. Planktic foraminiferal-based trace element-calcium ratios (TE/Ca) are a cornerstone in paleoceanographic reconstructions. While TE-environment calibrations are often established through culturing experiments, shell growth in culture is not always consistent with growth in a natural setting. For example, many species of planktic foraminifera thicken their shell at the end of their life cycle, producing a distinct “gametogenic” crust. Crust is common in fossil foraminifers, however, shells grown in culture do not often develop a thick crust. Here, we investigate potential vital effects associated with the crusting process by comparing the trace element (Mg/Ca, Na/Ca, Ba/Ca, Sr/Ca, Mn/Ca, Zn/Ca) and stable isotope (δ13C, δ18O) composition of alive, fully mature, uncrusted shells to recently deceased, crusted shells of Neogloboquadrina pachyderma collected from the same plankton tows off the Oregon (USA) coast. We find that uncrusted (N = 55) shells yield significantly higher Ba/Ca, Na/Ca, Mn/Ca, and Sr/Ca than crusted (N = 66) shells, and crust calcite records significantly lower TE/Ca values for all elements examined. Isotopic mixing models suggest that the crust calcite accounts for ∼40%–70% of crusted shell volume. Comparison of foraminiferal and seawater isotopes indicate that N. pachyderma lives in the upper 90 m of the water column, and that crust formation occurs slightly deeper than their average living depth habitat. Results highlight the necessity to establish calibrations from crusted shells, as application of calibrations from TE-enriched uncrusted shells may yield attenuated or misleading paleoceanographic reconstructions. 
    more » « less