skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microzooplankton grazing on the coccolithophore Emiliania huxleyi and its role in the global calcium carbonate cycle
Identifying mechanisms driving the substantial dissolution of biogenic CaCO3(60 to 80%) in surface and mesopelagic waters of the global ocean is critical for constraining the surface ocean’s alkalinity and inorganic carbon budgets. We examine microzooplankton grazing on coccolithophores, photosynthetic calcifying algae responsible for a majority of open-ocean CaCO3production, as a mechanism driving shallow dissolution. We show that microzooplankton grazing dissolves 92 ± 7% of ingested coccolith calcite, which may explain 50 to 100% of the observed CaCO3dissolution in supersaturated surface waters. Microzooplankton grazing on coccolithophores is thus a substantial, previously unrecognized biological mechanism affecting the ballasting of organic carbon to deeper waters, the ecology and fitness of microzooplankton themselves due to buffering of food vacuole pH, and ultimately the continued ability of the surface ocean to take up atmospheric carbon dioxide.  more » « less
Award ID(s):
2020378
PAR ID:
10659593
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Science Advances
Date Published:
Journal Name:
Science Advances
Volume:
10
Issue:
45
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The cycling of biologically produced calcium carbonate (CaCO3) in the ocean is a fundamental component of the global carbon cycle. Here, we present experimental determinations of in situ coccolith and foraminiferal calcite dissolution rates. We combine these rates with solid phase fluxes, dissolved tracers, and historical data to constrain the alkalinity cycle in the shallow North Pacific Ocean. The in situ dissolution rates of coccolithophores demonstrate a nonlinear dependence on saturation state. Dissolution rates of all three major calcifying groups (coccoliths, foraminifera, and aragonitic pteropods) are too slow to explain the patterns of both CaCO3sinking flux and alkalinity regeneration in the North Pacific. Using a combination of dissolved and solid‐phase tracers, we document a significant dissolution signal in seawater supersaturated for calcite. Driving CaCO3dissolution with a combination of ambient saturation state and oxygen consumption simultaneously explains solid‐phase CaCO3flux profiles and patterns of alkalinity regeneration across the entire N. Pacific basin. We do not need to invoke the presence of carbonate phases with higher solubilities. Instead, biomineralization and metabolic processes intimately associate the acid (CO2) and the base (CaCO3) in the same particles, driving the coupled shallow remineralization of organic carbon and CaCO3. The linkage of these processes likely occurs through a combination of dissolution due to zooplankton grazing and microbial aerobic respiration within degrading particle aggregates. The coupling of these cycles acts as a major filter on the export of both organic and inorganic carbon to the deep ocean. 
    more » « less
  2. Phytoplankton play a central role in the regulation of global carbon and nutrient cycles, forming the basis of the marine food webs. A group of biogeochemically important phytoplankton, the coccolithophores, produce calcium carbonate scales that have been hypothesized to deter or reduce grazing by microzooplankton. Here, a meta-analysis of mesocosm-based experiments demonstrates that calcification of the cosmopolitan coccolithophore, Emiliania huxleyi , fails to deter microzooplankton grazing. The median grazing to growth ratio for E. huxleyi (0.56 ± 0.40) was not significantly different among non-calcified nano- or picoeukaryotes (0.71 ± 0.31 and 0.55 ± 0.34, respectively). Additionally, the environmental concentration of E. huxleyi did not drive preferential grazing of non-calcified groups. These results strongly suggest that the possession of coccoliths does not provide E. huxleyi effective protection from microzooplankton grazing. Such indiscriminate consumption has implications for the dissolution and fate of CaCO 3 in the ocean, and the evolution of coccoliths. 
    more » « less
  3. Abstract The cycling of marine particulate matter is critical for sequestering carbon in the deep ocean and in marine sediments. Biogenic minerals such as calcium carbonate (CaCO3) and opal add density to more buoyant organic material, facilitating particle sinking and export. Here, we compile and analyze a global data set of particulate organic carbon (POC), particulate inorganic carbon (PIC, or CaCO3), and biogenic silica (bSi, or opal) concentrations collected using large volume pumps (LVPs). We analyze the distribution of all three biogenic phases in the small (1–53 μm) and large (>53 μm) size classes. Over the entire water column 76% of POC exists in the small size fraction. Similarly, the small size class contains 82% of PIC, indicating the importance of small‐sized coccolithophores to the PIC budget of the ocean. In contrast, 50% of bSi exists in the large size fraction, reflecting the larger size of diatoms and radiolarians compared with coccolithophores. We use PIC:POC and bSi:POC ratios in the upper ocean to document a consistent signal of shallow mineral dissolution, likely linked to biologically mediated processes. Sediment trap PIC:POC and bSi:POC are elevated with respect to LVP samples and increase strongly with depth, indicating the concentration of mineral phases and/or a deficit of POC in large sinking particles. We suggest that future sampling campaigns pair LVPs with sediment traps to capture the full particulate field, especially the large aggregates that contribute to mineral‐rich deep ocean fluxes, and may be missed by LVPs. 
    more » « less
  4. Abstract Planktonic calcifying organisms play a key role in regulating ocean carbonate chemistry and atmospheric CO2. Surprisingly, references to the absolute and relative contribution of these organisms to calcium carbonate production are lacking. Here we report quantification of pelagic calcium carbonate production in the North Pacific, providing new insights on the contribution of the three main planktonic calcifying groups. Our results show that coccolithophores dominate the living calcium carbonate (CaCO3) standing stock, with coccolithophore calcite comprising ~90% of total CaCO3production, and pteropods and foraminifera playing a secondary role. We show that pelagic CaCO3production is higher than the sinking flux of CaCO3at 150 and 200 m at ocean stations ALOHA and PAPA, implying that a large portion of pelagic calcium carbonate is remineralised within the photic zone; this extensive shallow dissolution explains the apparent discrepancy between previous estimates of CaCO3production derived from satellite observations/biogeochemical modeling versus estimates from shallow sediment traps. We suggest future changes in the CaCO3cycle and its impact on atmospheric CO2will largely depend on how the poorly-understood processes that determine whether CaCO3is remineralised in the photic zone or exported to depth respond to anthropogenic warming and acidification. 
    more » « less
  5. Abstract The current conventional paradigm of ocean food web structure inserts one full level or more of microzooplankton heterotrophic consumption, a substantial energy drop, between phytoplankton and mesozooplankton. Using a dataset with contemporaneous measurements of primary production (PP), size-fractioned mesozooplankton biomass, and micro- and mesozooplankton grazing rates from 10 tropical to temperate ocean ecosystems, we examined whether the structural inefficiencies in this paradigm allow sufficient energy transfer to support active metabolism and growth of observed zooplankton standing stocks. Zooplankton carbon requirements (ZCR) were determined from allometric equations that account for ecosystem differences in temperature and size structure. ZCRs were relatively low (∼30% of PP or less) for both oligotrophic systems and bloom biomass accumulation in eutrophic coastal waters. Higher relative ZCRs (>30% PP) were associated with elevated mesozooplankton grazing scenarios (bloom declines, abundant salps), advective subsidies, and open-ocean upwelling systems. Microzooplankton generally dominated as grazers of PP but were equal or secondary to direct herbivory as nutritional support for mesozooplankton in five of eight regional studies. All systems were able to satisfy ZCR within the conventional food-web interpretation, but balanced open-ocean upwelling systems required the most efficient alignments of contributions from microzooplankton grazing, direct herbivory, and carnivory to do so. 
    more » « less