skip to main content


Title: Self-supervised Vessel Enhancement Using Flow-Based Consistencies
Vessel segmentation is an essential task in many clinical applications. Although supervised methods have achieved state-of-art performance, acquiring expert annotation is laborious and mostly limited for two-dimensional datasets with a small sample size. On the contrary, unsupervised methods rely on handcrafted features to detect tube-like structures such as vessels. However, those methods require complex pipelines involving several hyper-parameters and design choices rendering the procedure sensitive, dataset-specific, and not generalizable. We propose a self-supervised method with a limited number of hyper-parameters that is generalizable across modalities. Our method uses tube-like structure properties, such as connectivity, profile consistency, and bifurcation, to introduce inductive bias into a learning algorithm. To model those properties, we generate a vector field that we refer to as a flow. Our experiments on various public datasets in 2D and 3D show that our method performs better than unsupervised methods while learning useful transferable features from unlabeled data. Unlike generic self-supervised methods, the learned features learn vessel-relevant features that are transferable for supervised approaches, which is essential when the number of annotated data is limited.  more » « less
Award ID(s):
1839332
NSF-PAR ID:
10299284
Author(s) / Creator(s):
Date Published:
Journal Name:
International Conference on Medical Image Computing and Computer-Assisted Intervention
Page Range / eLocation ID:
242-251
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Galaxy morphology is a fundamental quantity, which is essential not only for the full spectrum of galaxy-evolution studies, but also for a plethora of science in observational cosmology (e.g. as a prior for photometric-redshift measurements and as contextual data for transient light-curve classifications). While a rich literature exists on morphological-classification techniques, the unprecedented data volumes, coupled, in some cases, with the short cadences of forthcoming ‘Big-Data’ surveys (e.g. from the LSST), present novel challenges for this field. Large data volumes make such data sets intractable for visual inspection (even via massively distributed platforms like Galaxy Zoo), while short cadences make it difficult to employ techniques like supervised machine learning, since it may be impractical to repeatedly produce training sets on short time-scales. Unsupervised machine learning, which does not require training sets, is ideally suited to the morphological analysis of new and forthcoming surveys. Here, we employ an algorithm that performs clustering of graph representations, in order to group image patches with similar visual properties and objects constructed from those patches, like galaxies. We implement the algorithm on the Hyper-Suprime-Cam Subaru-Strategic-Program Ultra-Deep survey, to autonomously reduce the galaxy population to a small number (160) of ‘morphological clusters’, populated by galaxies with similar morphologies, which are then benchmarked using visual inspection. The morphological classifications (which we release publicly) exhibit a high level of purity, and reproduce known trends in key galaxy properties as a function of morphological type at z < 1 (e.g. stellar-mass functions, rest-frame colours, and the position of galaxies on the star-formation main sequence). Our study demonstrates the power of unsupervised machine learning in performing accurate morphological analysis, which will become indispensable in this new era of deep-wide surveys.

     
    more » « less
  2. Self-supervised learning of graph neural networks (GNN) is in great need because of the widespread label scarcity issue in real-world graph/network data. Graph contrastive learning (GCL), by training GNNs to maximize the correspondence between the representations of the same graph in its different augmented forms, may yield robust and transferable GNNs even without using labels. However, GNNs trained by traditional GCL often risk capturing redundant graph features and thus may be brittle and provide sub-par performance in downstream tasks. Here, we propose a novel principle, termed adversarial-GCL (\textit{AD-GCL}), which enables GNNs to avoid capturing redundant information during the training by optimizing adversarial graph augmentation strategies used in GCL. We pair AD-GCL with theoretical explanations and design a practical instantiation based on trainable edge-dropping graph augmentation. We experimentally validate AD-GCL by comparing with the state-of-the-art GCL methods and achieve performance gains of up-to~14\% in unsupervised, ~6\% in transfer and~3\% in semi-supervised learning settings overall with 18 different benchmark datasets for the tasks of molecule property regression and classification, and social network classification. 
    more » « less
  3. Self-supervised learning of graph neural networks (GNN) is in great need because of the widespread label scarcity issue in real-world graph/network data. Graph contrastive learning (GCL), by training GNNs to maximize the correspondence between the representations of the same graph in its different augmented forms, may yield robust and transferable GNNs even without using labels. However, GNNs trained by traditional GCL often risk capturing redundant graph features and thus may be brittle and provide sub-par performance in downstream tasks. Here, we propose a novel principle, termed adversarial-GCL (\textit{AD-GCL}), which enables GNNs to avoid capturing redundant information during the training by optimizing adversarial graph augmentation strategies used in GCL. We pair AD-GCL with theoretical explanations and design a practical instantiation based on trainable edge-dropping graph augmentation. We experimentally validate AD-GCL by comparing with the state-of-the-art GCL methods and achieve performance gains of up-to~14\% in unsupervised, ~6\% in transfer and~3\% in semi-supervised learning settings overall with 18 different benchmark datasets for the tasks of molecule property regression and classification, and social network classification. 
    more » « less
  4. ABSTRACT Introduction

    Remote military operations require rapid response times for effective relief and critical care. Yet, the military theater is under austere conditions, so communication links are unreliable and subject to physical and virtual attacks and degradation at unpredictable times. Immediate medical care at these austere locations requires semi-autonomous teleoperated systems, which enable the completion of medical procedures even under interrupted networks while isolating the medics from the dangers of the battlefield. However, to achieve autonomy for complex surgical and critical care procedures, robots require extensive programming or massive libraries of surgical skill demonstrations to learn effective policies using machine learning algorithms. Although such datasets are achievable for simple tasks, providing a large number of demonstrations for surgical maneuvers is not practical. This article presents a method for learning from demonstration, combining knowledge from demonstrations to eliminate reward shaping in reinforcement learning (RL). In addition to reducing the data required for training, the self-supervised nature of RL, in conjunction with expert knowledge-driven rewards, produces more generalizable policies tolerant to dynamic environment changes. A multimodal representation for interaction enables learning complex contact-rich surgical maneuvers. The effectiveness of the approach is shown using the cricothyroidotomy task, as it is a standard procedure seen in critical care to open the airway. In addition, we also provide a method for segmenting the teleoperator’s demonstration into subtasks and classifying the subtasks using sequence modeling.

    Materials and Methods

    A database of demonstrations for the cricothyroidotomy task was collected, comprising six fundamental maneuvers referred to as surgemes. The dataset was collected by teleoperating a collaborative robotic platform—SuperBaxter, with modified surgical grippers. Then, two learning models are developed for processing the dataset—one for automatic segmentation of the task demonstrations into a sequence of surgemes and the second for classifying each segment into labeled surgemes. Finally, a multimodal off-policy RL with rewards learned from demonstrations was developed to learn the surgeme execution from these demonstrations.

    Results

    The task segmentation model has an accuracy of 98.2%. The surgeme classification model using the proposed interaction features achieved a classification accuracy of 96.25% averaged across all surgemes compared to 87.08% without these features and 85.4% using a support vector machine classifier. Finally, the robot execution achieved a task success rate of 93.5% compared to baselines of behavioral cloning (78.3%) and a twin-delayed deep deterministic policy gradient with shaped rewards (82.6%).

    Conclusions

    Results indicate that the proposed interaction features for the segmentation and classification of surgical tasks improve classification accuracy. The proposed method for learning surgemes from demonstrations exceeds popular methods for skill learning. The effectiveness of the proposed approach demonstrates the potential for future remote telemedicine on battlefields.

     
    more » « less
  5. Abstract Text classification is a widely studied problem and has broad applications. In many real-world problems, the number of texts for training classification models is limited, which renders these models prone to overfitting. To address this problem, we propose SSL-Reg, a data-dependent regularization approach based on self-supervised learning (SSL). SSL (Devlin et al., 2019a) is an unsupervised learning approach that defines auxiliary tasks on input data without using any human-provided labels and learns data representations by solving these auxiliary tasks. In SSL-Reg, a supervised classification task and an unsupervised SSL task are performed simultaneously. The SSL task is unsupervised, which is defined purely on input texts without using any human- provided labels. Training a model using an SSL task can prevent the model from being overfitted to a limited number of class labels in the classification task. Experiments on 17 text classification datasets demonstrate the effectiveness of our proposed method. Code is available at https://github.com/UCSD-AI4H/SSReg. 
    more » « less