skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: EXPLANATION BY PROGRESSIVE EXAGGERATION
As machine learning methods see greater adoption and implementation in high-stakes applications such as medical image diagnosis, the need for model interpretability and explanation has become more critical. Classical approaches that assess feature importance (e.g., saliency maps) do not explain how and why a particular region of an image is relevant to the prediction. We propose a method that explains the outcome of a classification black-box by gradually exaggerating the semantic effect of a given class. Given a query input to a classifier, our method produces a progressive set of plausible variations of that query, which gradually changes the posterior probability from its original class to its negation. These counter-factually generated samples preserve features unrelated to the classification decision, such that a user can employ our method as a “tuning knob” to traverse a data manifold while crossing the decision boundary. Our method is model agnostic and only requires the output value and gradient of the predictor with respect to its input.  more » « less
Award ID(s):
1839332
PAR ID:
10299295
Author(s) / Creator(s):
Date Published:
Journal Name:
The International Conference on Learning Representations
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Messinger, David W.; Velez-Reyes, Miguel (Ed.)
    Recent advances in data fusion provide the capability to obtain enhanced hyperspectral data with high spatial and spectral information content, thus allowing for an improved classification accuracy. Although hyperspectral image classification is a highly investigated topic in remote sensing, each classification technique presents different advantages and disadvantages. For example; methods based on morphological filtering are particularly good at classifying human-made structures with basic geometrical spatial shape, like houses and buildings. On the other hand, methods based on spectral information tend to perform better classification in natural scenery with more shape diversity such as vegetation and soil areas. Even more, for those classes with mixed pixels, small training data or objects with similar re ectance values present a higher challenge to obtain high classification accuracy. Therefore, it is difficult to find just one technique that provides the highest accuracy of classification for every class present in an image. This work proposes a decision fusion approach aiming to increase classification accuracy of enhanced hyperspectral images by integrating the results of multiple classifiers. Our approach is performed in two-steps: 1) the use of machine learning algorithms such as Support Vector Machines (SVM), Deep Neural Networks (DNN) and Class-dependent Sparse Representation will generate initial classification data, then 2) the decision fusion scheme based on a Convolutional Neural Network (CNN) will integrate all the classification results into a unified classification rule. In particular, the CNN receives as input the different probabilities of pixel values from each implemented classifier, and using a softmax activation function, the final decision is estimated. We present results showing the performance of our method using different hyperspectral image datasets. 
    more » « less
  2. Recent advances in instruction tuning have led to the development of State-of-the-Art Large Multimodal Models (LMMs). Given the novelty of these models the impact of visual adversarial attacks on LMMs has not been thoroughly examined. We conduct a comprehensive study of the robustness of various LMMs against different adversarial attacks evaluated across tasks including image classification image captioning and Visual Question Answer (VQA). We find that in general LMMs are not robust to visual adversarial inputs. However our findings suggest that context provided to the model via prompts--such as questions in a QA pair--helps to mitigate the effects of visual adversarial inputs. Notably the LMMs evaluated demonstrated remarkable resilience to such attacks on the ScienceQA task with only an 8.10% drop in performance compared to their visual counterparts which dropped 99.73%. We also propose a new approach to real-world image classification which we term query decomposition. By incorporating existence queries into our input prompt we observe diminished attack effectiveness and improvements in image classification accuracy. This research highlights a previously under explored facet of LMM robustness and sets the stage for future work aimed at strengthening the resilience of multimodal systems in adversarial environments. 
    more » « less
  3. Since the cost of labeling data is getting higher and higher, we hope to make full use of the large amount of unlabeled data and improve image classification effect through adding some unlabeled samples for training. In addition, we expect to uniformly realize two tasks, namely the clustering of the unlabeled data and the recognition of the query image. We achieve the goal by designing a novel sparse model based on manifold assumption, which has been proved to work well in many tasks. Based on the assumption that images of the same class lie on a sub-manifold and an image can be approximately represented as the linear combination of its neighboring data due to the local linear property of manifold, we proposed a sparse representation model on manifold. Specifically, there are two regularizations, i.e., a variant Trace lasso norm and the manifold Laplacian regularization. The first regularization term enables the representation coefficients satisfying sparsity between groups and density within a group. And the second term is manifold Laplacian regularization by which label can be accurately propagated from labeled data to unlabeled data. Augmented Lagrange Multiplier (ALM) scheme and Gauss Seidel Alternating Direction Method of Multiplier (GS-ADMM) are given to solve the problem numerically. We conduct some experiments on three human face databases and compare the proposed work with several state-of-the-art methods. For each subject, some labeled face images are randomly chosen for training for those supervised methods, and a small amount of unlabeled images are added to form the training set of the proposed approach. All experiments show our method can get better classification results due to the addition of unlabeled samples. 
    more » « less
  4. Several recent works have demonstrated highly effective model stealing (MS) attacks on Deep Neural Networks (DNNs) in black-box settings, even when the training data is unavailable. These attacks typically use some form of Out of Distribution (OOD) data to query the target model and use the predictions obtained to train a clone model. Such a clone model learns to approximate the decision boundary of the target model, achieving high accuracy on in-distribution examples. We propose Ensemble of Diverse Models (EDM) to defend against such MS attacks. EDM is made up of models that are trained to produce dissimilar predictions for OOD inputs. By using a different member of the ensemble to service different queries, our defense produces predictions that are highly discontinuous in the input space for the adversary's OOD queries. Such discontinuities cause the clone model trained on these predictions to have poor generalization on in-distribution examples. Our evaluations on several image classification tasks demonstrate that EDM defense can severely degrade the accuracy of clone models (up to 39.7%). Our defense has minimal impact on the target accuracy, negligible computational costs during inference, and is compatible with existing defenses for MS attacks. 
    more » « less
  5. null (Ed.)
    This work presents ideation and preliminary results of using contextual information and information of the objects present in the scene to query applicable social navigation rules for the sensed context. Prior work in socially-Aware Navigation (SAN) shows its importance in human-robot interaction as it improves the interaction quality, safety and comfort of the interacting partner. In this work, we are interested in automatic detection of social rules in SAN and we present three major components of our method, namely: a Convolutional Neural Network-based context classifier that can autonomously perceive contextual information using camera input; a YOLO-based object detection to localize objects with a scene; and a knowledge base of social rules relationships with the concepts to query them using both contextual and detected objects in the scene. Our preliminary results suggest that our approach can observe an on-going interaction, given an image input, and use that information to query the social navigation rules required in that particular context. 
    more » « less