Most permissionless blockchain networks run on peer-to-peer (P2P) networks, which offer flexibility and decentralization at the expense of performance (e.g., network latency). Historically, this tradeoff has not been a bottleneck for most blockchains. However, an emerging host of blockchain-based applications (e.g., decentralized finance) are increasingly sensitive to latency; users who can reduce their network latency relative to other users can accrue (sometimes significant) financial gains. In this work, we initiate the study of strategic latency reduction in blockchain P2P networks. We first define two classes of latency that are of interest in blockchain applications. We then show empirically that a strategic agent who controls only their local peering decisions can manipulate both types of latency, achieving 60% of the global latency gains provided by the centralized, paid service bloXroute, or, in targeted scenarios, comparable gains. Finally, we show that our results are not due to the poor design of existing P2P networks. Under a simple network model, we theoretically prove that an adversary can always manipulate the P2P network's latency to their advantage, provided the network experiences sufficient peer churn and transaction activity.
more »
« less
Fair Peer-to-Peer Content Delivery via Blockchain
In comparison with conventional content delivery networks, peer-to-peer (p2p) content delivery is promising to save cost and handle high peak-demand, and can also complement the decentralized storage networks such as Filecoin. However, reliable p2p delivery requires proper enforcement of delivery fairness, i.e., the deliverers should be rewarded according to their in-time delivery. Unfortunately, most existing studies on delivery fairness are based on non-cooperative game-theoretic assumptions that are arguably unrealistic in the ad-hoc p2p setting.
We for the first time put forth an expressive yet still minimalist security notion for desired fair p2p content delivery, and give two efficient solutions π₯πΊπππ£ππππ
ππΊπ½ and π₯πΊπππ²πππΎπΊπ via the blockchain for p2p downloading and p2p streaming scenarios, respectively. Our designs not only guarantee delivery fairness to ensure deliverers be paid (nearly) proportional to their in-time delivery but also ensure the content consumers and content providers are fairly treated. The fairness of each party can be guaranteed when the other two parties collude to arbitrarily misbehave. Moreover, the systems are efficient in the sense of attaining nearly asymptotically optimal on-chain costs and deliverer communication.
We implement the protocols and build the prototype systems atop the Ethereum Ropsten network. Extensive experiments done in LAN and WAN settings showcase their high practicality.
more »
« less
- Award ID(s):
- 1801492
- NSF-PAR ID:
- 10299316
- Date Published:
- Journal Name:
- European Symposium on Research in Computer Security
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Tran, Duc ; Thai, My ; Krishnamachari, Bhaskar (Ed.)The security and performance of blockchain systems such as Bitcoin critically rely on the P2P network. This paper aims to investigate blockchain P2P networks. We explore the topologies, peer discovery, and data forwarding and examine the security and performance of the P2P network. Further, we formulate an optimization problem to study the theoretical limit of the performance and provide a solution to achieve optimal performance in a blockchain P2P network.more » « less
-
The rise of peer-to-peer (P2P) marketplace paradigms has transformed existing marketplace models, but the extent to which this approach can be applied to the energy marketplace has yet to be considered. In this paper, we examine existing approaches taken in the application of a P2P paradigm to the energy marketplace, further presenting an approach towards facilitating an online P2P energy marketplace, implementing a prototype P2P web application named SolTrade. Furthermore, we submit initial statistics based on simulated transactions facilitated through the platform, which illustrate the physical impact of marketplace transactions on the energy grid. In particular, these results show that, as the number of users rises, the chance of overloading the grid rises, but the chance of the grid being unable to sustain itself without an external source of energy falls.more » « less
-
As distributed energy resources (DERs) are widely deployed, DC packetized power microgrids have been considered as a promising solution to incorporate DERs effectively and steadily. In this paper, we consider a DC packetized power microgrid, where the energy is dispatched in the form of power packets with the assist of a power router. However, the benefits of the microgrid can only be realized when energy subscribers (ESs) equipped with DERs actively participate in the energy market. Therefore, peer-to-peer (P2P) energy trading is necessary in the DC packetized power microgrid to encourage the usage of DERs. Different from P2P energy trading in AC microgrids, the dispatching capability of the router needs to be considered in DC microgrids, which will complicate the trading problem. To tackle this challenge, we formulate the P2P trading problem as an auction game, in which the demander ESs submit bids to compete for power packets, and a controller decides the energy allocation and power packet scheduling. Analysis of the proposed scheme is provided, and its effectiveness is validated through simulation.more » « less
-
We propose measurement integrity, a property related to ex post reward fairness, as a novel desideratum for peer prediction mechanisms in many natural applications. Like robustness against strategic reporting, the property that has been the primary focus of the peer prediction literature, measurement integrity is an important consideration for understanding the practical performance of peer prediction mechanisms. We perform computational experiments, both with an agent-based model and with real data, to empirically evaluate peer prediction mechanisms according to both of these important properties. Our evaluations simulate the application of peer prediction mechanisms to peer assessment---a setting in which ex post fairness concerns are particularly salient. We find that peer prediction mechanisms, as proposed in the literature, largely fail to demonstrate significant measurement integrity in our experiments. We also find that theoretical properties concerning robustness against strategic reporting are somewhat noisy predictors of empirical performance. Further, there is an apparent trade-off between our two dimensions of analysis. The best-performing mechanisms in terms of measurement integrity are highly susceptible to strategic reporting. Ultimately, however, we show that supplementing mechanisms with realistic parametric statistical models can, in some cases, improve performance along both dimensions of our analysis and result in mechanisms that strike the best balance between them.more » « less