skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Strategic Latency Reduction in Blockchain Peer-to-Peer Networks
Most permissionless blockchain networks run on peer-to-peer (P2P) networks, which offer flexibility and decentralization at the expense of performance (e.g., network latency). Historically, this tradeoff has not been a bottleneck for most blockchains. However, an emerging host of blockchain-based applications (e.g., decentralized finance) are increasingly sensitive to latency; users who can reduce their network latency relative to other users can accrue (sometimes significant) financial gains. In this work, we initiate the study of strategic latency reduction in blockchain P2P networks. We first define two classes of latency that are of interest in blockchain applications. We then show empirically that a strategic agent who controls only their local peering decisions can manipulate both types of latency, achieving 60% of the global latency gains provided by the centralized, paid service bloXroute, or, in targeted scenarios, comparable gains. Finally, we show that our results are not due to the poor design of existing P2P networks. Under a simple network model, we theoretically prove that an adversary can always manipulate the P2P network's latency to their advantage, provided the network experiences sufficient peer churn and transaction activity.  more » « less
Award ID(s):
1705007
PAR ID:
10460973
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Measurement and Analysis of Computing Systems
Volume:
7
Issue:
2
ISSN:
2476-1249
Page Range / eLocation ID:
1 to 33
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tran, Duc; Thai, My; Krishnamachari, Bhaskar (Ed.)
    The security and performance of blockchain systems such as Bitcoin critically rely on the P2P network. This paper aims to investigate blockchain P2P networks. We explore the topologies, peer discovery, and data forwarding and examine the security and performance of the P2P network. Further, we formulate an optimization problem to study the theoretical limit of the performance and provide a solution to achieve optimal performance in a blockchain P2P network. 
    more » « less
  2. null (Ed.)
    In comparison with conventional content delivery networks, peer-to-peer (p2p) content delivery is promising to save cost and handle high peak-demand, and can also complement the decentralized storage networks such as Filecoin. However, reliable p2p delivery requires proper enforcement of delivery fairness, i.e., the deliverers should be rewarded according to their in-time delivery. Unfortunately, most existing studies on delivery fairness are based on non-cooperative game-theoretic assumptions that are arguably unrealistic in the ad-hoc p2p setting. We for the first time put forth an expressive yet still minimalist security notion for desired fair p2p content delivery, and give two efficient solutions ๐–ฅ๐–บ๐—‚๐—‹๐–ฃ๐—ˆ๐—๐—‡๐—…๐—ˆ๐–บ๐–ฝ and ๐–ฅ๐–บ๐—‚๐—‹๐–ฒ๐—๐—‹๐–พ๐–บ๐—† via the blockchain for p2p downloading and p2p streaming scenarios, respectively. Our designs not only guarantee delivery fairness to ensure deliverers be paid (nearly) proportional to their in-time delivery but also ensure the content consumers and content providers are fairly treated. The fairness of each party can be guaranteed when the other two parties collude to arbitrarily misbehave. Moreover, the systems are efficient in the sense of attaining nearly asymptotically optimal on-chain costs and deliverer communication. We implement the protocols and build the prototype systems atop the Ethereum Ropsten network. Extensive experiments done in LAN and WAN settings showcase their high practicality. 
    more » « less
  3. Utilizing distributed renewable and energy storage resources via peer-to-peer (P2P) energy trading has long been touted as a solution to improve energy systemโ€™s resilience and sustainability. Consumers and prosumers (those who have energy generation resources), however, do not have expertise to engage in repeated P2P trading, and the zero-marginal costs of renewables present challenges in determining fair market prices. To address these issues, we propose a multi-agent reinforcement learning (MARL) framework to help automate consumersโ€™ bidding and management of their solar PV and energy storage resources, under a specific P2P clearing mechanism that utilizes the so-called supply-demand ratio. In addition, we show how the MARL framework can integrate physical network constraints to realize decentralized voltage control, hence ensuring physical feasibility of the P2P energy trading and paving ways for real-world implementations. 
    more » « less
  4. Blockchain relies on the underlying peer-to-peer (P2P) networking to broadcast and get up-to-date on the blocks and transactions. Because of the blockchain operationsโ€™ reliance on the information provided by P2P networking, it is imperative to have high P2P connectivity for the quality of the blockchain system operations and performances. High P2P networking connectivity ensures that a peer node is connected to multiple other peers providing a diverse set of observers of the current state of the blockchain and transactions. However, in a permissionless Bitcoin cryptocurrency network, using the peer identifiers โ€“ including the current approach of counting the number of distinct IP addresses and port numbers โ€“ can be ineffective in measuring the number of peer connections and estimating the networking connectivity. Such current approach is further challenged by the networking threats manipulating identities. We build a robust estimation engine for the P2P networking connectivity by sensing and processing the P2P networking traffic. We take a systematic approach to study our engine and analyze the followings: the different components of the connectivity estimation engine and how they affect the accuracy performances, the role and the effectiveness of an outlier detection to enhance the connectivity estimation, and the engineโ€™s interplay with the Bitcoin protocol. We implement a working Bitcoin prototype connected to the Bitcoin mainnet to validate and improve our engineโ€™s performances and evaluate the estimation accuracy and cost efficiency of our connectivity estimation engine. Our results show that our scheme effectively counters the identity-manipulations threats, achieves 96.4% estimation accuracy with a tolerance of one peer connection, and is lightweight in the overheads in the mining rate, thus making it appropriate for the miner deployment. 
    more » « less
  5. The rise of peer-to-peer (P2P) marketplace paradigms has transformed existing marketplace models, but the extent to which this approach can be applied to the energy marketplace has yet to be considered. In this paper, we examine existing approaches taken in the application of a P2P paradigm to the energy marketplace, further presenting an approach towards facilitating an online P2P energy marketplace, implementing a prototype P2P web application named SolTrade. Furthermore, we submit initial statistics based on simulated transactions facilitated through the platform, which illustrate the physical impact of marketplace transactions on the energy grid. In particular, these results show that, as the number of users rises, the chance of overloading the grid rises, but the chance of the grid being unable to sustain itself without an external source of energy falls. 
    more » « less