It is essential that mesoscopic simulations of reactive systems reproduce the correct statistical distributions at thermodynamic equilibrium. By considering a compressible fluctuating hydrodynamics (FHD) simulation method of ideal gas mixtures undergoing reversible reactions described by the chemical Langevin equations, we show that thermodynamic consistency in reaction rates and the use of instantaneous temperatures for the evaluation of reaction rates is required for fluctuations for the overall system to be correct. We then formulate the required properties of a thermodynamically consistent reaction (TCR) model. As noted in the literature, while reactions are often discussed in terms of forward and reverse rates, these rates should not be modeled independently because they must be compatible with thermodynamic equilibrium for the system. Using a simple TCR model where each chemical species has constant heat capacity, we derive the explicit condition that the forward and reverse reaction rate constants must satisfy in order for the system to be thermodynamically consistent. We perform equilibrium and non-equilibrium simulations of ideal gas mixtures undergoing a reversible dimerization reaction to measure the fluctuational behavior of the system numerically. We confirm that FHD simulations with the TCR model give the correct static structure factor of equilibrium fluctuations. For the statistically steady simulation of a gas mixture between two isothermal walls with different temperatures, we show using the TCR model that the temperature variance agrees with the corresponding thermodynamic-equilibrium temperature variance in the interior of the system, whereas noticeable deviations are present in regions near walls, where chemistry is far from equilibrium.
more »
« less
Implementing parallel arithmetic via acetylation and its application to chemical image processing
Chemical mixtures can be leveraged to store large amounts of data in a highly compact form and have the potential for massive scalability owing to the use of large-scale molecular libraries. With the parallelism that comes from having many species available, chemical-based memory can also provide the physical substrate for computation with increased throughput. Here, we represent non-binary matrices in chemical solutions and perform multiple matrix multiplications and additions, in parallel, using chemical reactions. As a case study, we demonstrate image processing, in which small greyscale images are encoded in chemical mixtures and kernel-based convolutions are performed using phenol acetylation reactions. In these experiments, we use the measured concentrations of reaction products (phenyl acetates) to reconstruct the output image. In addition, we establish the chemical criteria required to realize chemical image processing and validate reaction-based multiplication. Most importantly, this work shows that fundamental arithmetic operations can be reliably carried out with chemical reactions. Our approach could serve as a basis for developing more advanced chemical computing architectures.
more »
« less
- Award ID(s):
- 1941344
- PAR ID:
- 10299347
- Date Published:
- Journal Name:
- Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
- Volume:
- 477
- Issue:
- 2248
- ISSN:
- 1364-5021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Reducing the use of solvents is an important aim of green chemistry. Using micelles self-assembled from amphiphilic molecules dispersed in water (considered a green solvent) has facilitated reactions of organic compounds. When performing reactions in micelles, the hydrophobic effect can considerably accelerate apparent reaction rates, as well as enhance selectivity. Here, we review micellar reaction media and their potential role in sustainable chemical production. The focus of this review is applications of engineered amphiphilic systems for reactions (surface-active ionic liquids, designer surfactants, and block copolymers) as reaction media. Micelles are a versatile platform for performing a large array of organic chemistries using water as the bulk solvent. Building on this foundation, synthetic sequences combining several reaction steps in one pot have been developed. Telescoping multiple reactions can reduce solvent waste by limiting the volume of solvents, as well as eliminating purification processes. Thus, in particular, we review recent advances in “one-pot” multistep reactions achieved using micellar reaction media with potential applications in medicinal chemistry and agrochemistry. Photocatalyzed reactions in micellar reaction media are also discussed. In addition to the use of micelles, we emphasize the process (steps to isolate the product and reuse the catalyst).more » « less
-
Systematic screening of accelerated chemical reactions at solid/solution interfaces has been carried out in high-throughput fashion using desorption electrospray ionization mass spectrometry and it provides evidence that glass surfaces accelerate various base-catalyzed chemical reactions. The reaction types include elimination, solvolysis, condensation and oxidation, whether or not the substrates are pre-charged. In a detailed mechanistic study, we provide evidence using nanoESI showing that glass surfaces can act as strong bases and convert protic solvents into their conjugate bases which then act as bases/nucleophiles when participating in chemical reactions. In aprotic solvents such as acetonitrile, glass surfaces act as ‘green’ heterogeneous catalysts that can be recovered and reused after simple rinsing. Besides their use in organic reaction catalysis, glass surfaces are also found to act as degradation reagents for phospholipids with increasing extents of degradation occurring at low concentrations. This finding suggests that the storage of base/nucleophile-labile compounds or lipids in glass containers should be avoided.more » « less
-
“Prebiotic soup” often features in discussions of origins of life research, both as a theoretical concept when discussing abiological pathways to modern biochemical building blocks and, more recently, as a feedstock in prebiotic chemistry experiments focused on discovering emergent, systems-level processes such as polymerization, encapsulation, and evolution. However, until now, little systematic analysis has gone into the design of well-justified prebiotic mixtures, which are needed to facilitate experimental replicability and comparison among researchers. This paper explores principles that should be considered in choosing chemical mixtures for prebiotic chemistry experiments by reviewing the natural environmental conditions that might have created such mixtures and then suggests reasonable guidelines for designing recipes. We discuss both “assembled” mixtures, which are made by mixing reagent grade chemicals, and “synthesized” mixtures, which are generated directly from diversity-generating primary prebiotic syntheses. We discuss different practical concerns including how to navigate the tremendous uncertainty in the chemistry of the early Earth and how to balance the desire for using prebiotically realistic mixtures with experimental tractability and replicability. Examples of two assembled mixtures, one based on materials likely delivered by carbonaceous meteorites and one based on spark discharge synthesis, are presented to illustrate these challenges. We explore alternative procedures for making synthesized mixtures using recursive chemical reaction systems whose outputs attempt to mimic atmospheric and geochemical synthesis. Other experimental conditions such as pH and ionic strength are also considered. We argue that developing a handful of standardized prebiotic recipes may facilitate coordination among researchers and enable the identification of the most promising mechanisms by which complex prebiotic mixtures were “tamed” during the origin of life to give rise to key living processes such as self-propagation, information processing, and adaptive evolution. We end by advocating for the development of a public prebiotic chemistry database containing experimental methods (including soup recipes), results, and analytical pipelines for analyzing complex prebiotic mixtures.more » « less
-
Abstract Sustainability in chemical synthesis is a major aspect of the current synthetic endeavors and, therefore, mimicking the biological process in the laboratory nowadays has the highest priority. Towards achieving this goal, designing organic reactions in domino mode rather than the multistep synthetic pathways and using organocatalysis instead of metal catalysis have received a lot of attention due to the inherent advantages of these processes in terms of synthetic efficiency and sustainability. As a result, the field of asymmetric organocatalytic domino reactions has witnessed tremendous progress in recent years. This review attempts to summarize the latest developments in asymmetric organocatalyzed domino reactions since 2012, with the emphasis on the catalysts and reaction modes. Discussions on the reaction mechanisms and the applications of the developed domino reaction methods in the synthesis of biologically active molecules and natural products are also included when appropriate. magnified imagemore » « less
An official website of the United States government

