skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Wing Fold and Twist Greatly Improves Flight Efficiency for Bat-Scale Flapping Wing Robots
Award ID(s):
1931122
PAR ID:
10299353
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Del Campo, Matias; Leach, Neil (Ed.)
    Special Issue: Machine Hallucinations: Architecture and Artificial Intelligence Nature has always been the master of design skills to which humans only aspire, but new approaches bring that aspiration closer to our reach than ever before. Through 4.5 billion years of iterations, nature has shown us its extraordinary craftsmanship, breeding a variety of species whose body structures have gradually evolved to adapt to natural phenomena and make full use of their unique characteristics. The dragonfly wing, among body structures, is an extreme example of efficient use of materials and minimal weight while remaining strong enough to withstand the tremendous forces of flight. It has long been the object of scientific research examining its structural advantages to apply its principles to fabricated designs.1 We can imitate its form and create duplicates, but thoroughly understanding the dragonfly wing’s mechanism, behavior, and design logic is no trivial task. 
    more » « less
  2. del Campo, Matias; Leach, Neil (Ed.)
    Nature has always been the master of design skills to which humans only aspire to, but new approaches bring that aspiration closer to our reach than ever before. Through 4.5 billion years of iterations, nature has shown us its extraordinary craftsmanship, breeding a variety of species whose body structures have gradually evolved to adapt to natural phenomena and make full use of their unique characteristics. The dragonfly wing, among body structure is an extreme example of efficient use of materials and minimal weight while remaining strong enough to withstand the tremendous forces of flight. It has long been the object of scientific research examining its structural advantages to applying their principles to fabricated designs.1 We can imitate its form and create duplicates, but thoroughly understanding the dragonfly wing’s mechanism, behavior and design logic is no trivial task. 
    more » « less
  3. null (Ed.)
    Flapping-wing insects, birds and robots are thought to offset the high power cost of oscillatory wing motion by using elastic elements for energy storage and return. Insects possess highly resilient elastic regions in their flight anatomy that may enable high dynamic efficiency. However, recent experiments highlight losses due to damping in the insect thorax that could reduce the benefit of those elastic elements. We performed experiments on, and simulations of, a dynamically scaled robophysical flapping model with an elastic element and biologically relevant structural damping to elucidate the roles of body mechanics, aerodynamics and actuation in spring-wing energetics. We measured oscillatory flapping-wing dynamics and energetics subject to a range of actuation parameters, system inertia and spring elasticity. To generalize these results, we derive the non-dimensional spring-wing equation of motion and present variables that describe the resonance properties of flapping systems: N , a measure of the relative influence of inertia and aerodynamics, and K ^ , the reduced stiffness. We show that internal damping scales with N , revealing that dynamic efficiency monotonically decreases with increasing N . Based on these results, we introduce a general framework for understanding the roles of internal damping, aerodynamic and inertial forces, and elastic structures within all spring-wing systems. 
    more » « less