Kowalski, Dariusz R
(Ed.)
Broadcast is a fundamental primitive that plays an important role in secure Multi-Party Computation (MPC) area. In this work, we revisit the broadcast with selective abort (hereafter, short for broadcast) proposed by Goldwasser and Lindell (DISC 2002; JoC 2005) and study the round complexity of broadcast under different setup assumptions. Our findings are summarized as follows: - We formally prove that 1-round broadcast is impossible under various widely-used setup assumptions (e.g., plain model, random oracle model, and common reference string model, etc.), even if we consider the static security and the stand-alone framework. More concretely, we formalize a notion called consistent oracle to capture these setups, and prove that our impossibility holds under the consistent oracle. Our impossibility holds in both honest majority setting and dishonest majority setting. - We show that 1-round broadcast protocol is possible in the Universal Composition (UC) framework, by assuming stateful trusted hardwares. Our protocol can be proven secure against all-but-one adaptive and malicious corruptions. We bypass our impossibility result since our stateful trusted hardwares do not satisfy the definition of consistent oracle. - We provide an application of 1-round broadcast: we construct the first 1-round multiple-verifier zero-knowledge (which is a special case of MPC) protocol, without assuming the broadcast hybrid world.
more »
« less
An official website of the United States government

