Abstract Predicting discharge in contiguously data‐scarce or ungauged regions is needed for quantifying the global hydrologic cycle. We show that prediction in ungauged regions (PUR) has major, underrecognized uncertainty and is drastically more difficult than previous problems where basins can be represented by neighboring or similar basins (known as prediction in ungauged basins). While deep neural networks demonstrated stellar performance for streamflow predictions, performance nonetheless declined for PUR, benchmarked here with a new stringent region‐based holdout test on a US data set with 671 basins. We tested approaches to reduce such errors, leveraging deep network's flexibility to integrate “soft” data, such as satellite‐based soil moisture product, or daily flow distributions which improved low flow simulations. A novel input‐selection ensemble improved average performance and greatly reduced catastrophic failures. Despite challenges, deep networks showed stronger performance metrics for PUR than traditional hydrologic models. They appear competitive for geoscientific modeling even in data‐scarce settings. 
                        more » 
                        « less   
                    
                            
                            The suitability of differentiable, physics-informed machine learning hydrologic models for ungauged regions and climate change impact assessment
                        
                    
    
            Abstract. As a genre of physics-informed machine learning, differentiable process-based hydrologic models (abbreviated as δ or delta models) with regionalized deep-network-based parameterization pipelines were recently shown to provide daily streamflow prediction performance closely approaching that of state-of-the-art long short-term memory (LSTM) deep networks. Meanwhile, δ models provide a full suite of diagnostic physical variables and guaranteed mass conservation. Here, we ran experiments to test (1) their ability to extrapolate to regions far from streamflow gauges and (2) their ability to make credible predictions of long-term (decadal-scale) change trends. We evaluated the models based on daily hydrograph metrics (Nash–Sutcliffe model efficiency coefficient, etc.) and predicted decadal streamflow trends. For prediction in ungauged basins (PUB; randomly sampled ungauged basins representing spatial interpolation), δ models either approached or surpassed the performance of LSTM in daily hydrograph metrics, depending on the meteorological forcing data used. They presented a comparable trend performance to LSTM for annual mean flow and high flow but worse trends for low flow. For prediction in ungauged regions (PUR; regional holdout test representing spatial extrapolation in a highly data-sparse scenario), δ models surpassed LSTM in daily hydrograph metrics, and their advantages in mean and high flow trends became prominent. In addition, an untrained variable, evapotranspiration, retained good seasonality even for extrapolated cases. The δ models' deep-network-based parameterization pipeline produced parameter fields that maintain remarkably stable spatial patterns even in highly data-scarce scenarios, which explains their robustness. Combined with their interpretability and ability to assimilate multi-source observations, the δ models are strong candidates for regional and global-scale hydrologic simulations and climate change impact assessment. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10437869
- Date Published:
- Journal Name:
- Hydrology and Earth System Sciences
- Volume:
- 27
- Issue:
- 12
- ISSN:
- 1607-7938
- Page Range / eLocation ID:
- 2357 to 2373
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Accurate hydrologic modeling is vital to characterizing how the terrestrial water cycle responds to climate change. Pure deep learning (DL) models have been shown to outperform process-based ones while remaining difficult to interpret. More recently, differentiable physics-informed machine learning models with a physical backbone can systematically integrate physical equations and DL, predicting untrained variables and processes with high performance. However, it is unclear if such models are competitive for global-scale applications with a simple backbone. Therefore, we use – for the first time at this scale – differentiable hydrologic models (full name δHBV-globe1.0-hydroDL, shortened to δHBV here) to simulate the rainfall–runoff processes for 3753 basins around the world. Moreover, we compare the δHBV models to a purely data-driven long short-term memory (LSTM) model to examine their strengths and limitations. Both LSTM and the δHBV models provide competitive daily hydrologic simulation capabilities in global basins, with median Kling–Gupta efficiency values close to or higher than 0.7 (and 0.78 with LSTM for a subset of 1675 basins with long-term discharge records), significantly outperforming traditional models. Moreover, regionalized differentiable models demonstrated stronger spatial generalization ability (median KGE 0.64) than a traditional parameter regionalization approach (median KGE 0.46) and even LSTM for ungauged region tests across continents. Nevertheless, relative to LSTM, the differentiable model was hampered by structural deficiencies for cold or polar regions, highly arid regions, and basins with significant human impacts. This study also sets the benchmark for hydrologic estimates around the world and builds a foundation for improving global hydrologic simulations.more » « less
- 
            Accurate streamflow prediction is critical for ensuring water supply and detecting floods, while also providing essential hydrological inputs for other scientific models in fields such as climate and agriculture.Recently, deep learning models have been shown to achieve state-of-the-art regionalization performance by building a global hydrologic model. These models predict streamflow given catchment physical characteristics and weather forcing data.However, these models are only focused on gauged basins and cannot adapt to ungaugaed basins, i.e., basins without training data. Prediction in Ungauged Basins (PUB) is considered one of the most important challenges in hydrology, as most basins in the United States and around the world have no observations. In this work, we propose a meta-transfer learning approach by enhancing imperfect physics equations that facilitate model adaptation. Intuitively, physical equations can often be used to regularize deep learning models to achieve robust regionalization performance under gauged scenarios, but they can be inaccurate due to the simplified representation of physics. We correct such uncertainty in physical equation by residual approximation and let these corrected equations guide the model training process. We evaluated the proposed method for predicting daily streamflow on the catchment attributes and meteorology for large-sample studies (CAMELS) dataset. The experiment results on hydrological data over 19 years demonstrate the effectiveness of the proposed method in ungauged scenarios.more » « less
- 
            Abstract This study examines whether deep learning models can produce reliable future projections of streamflow under warming. We train a regional long short‐term memory network (LSTM) to daily streamflow in 15 watersheds in California and develop three process models (HYMOD, SAC‐SMA, and VIC) as benchmarks. We force all models with scenarios of warming and assess their hydrologic response, including shifts in the hydrograph and total runoff ratio. All process models show a shift to more winter runoff, reduced summer runoff, and a decline in the runoff ratio due to increased evapotranspiration. The LSTM predicts similar hydrograph shifts but in some watersheds predicts an unrealistic increase in the runoff ratio. We then test two alternative versions of the LSTM in which process model outputs are used as either additional training targets (i.e., multi‐output LSTM) or input features. Results indicate that the multi‐output LSTM does not correct the unrealistic streamflow projections under warming. The hybrid LSTM using estimates of evapotranspiration from SAC‐SMA as an additional input feature produces more realistic streamflow projections, but this does not hold for VIC or HYMOD. This suggests that the hybrid method depends on the fidelity of the process model. Finally, we test climate change responses under an LSTM trained to over 500 watersheds across the United States and find more realistic streamflow projections under warming. Ultimately, this work suggests that hybrid modeling may support the use of LSTMs for hydrologic projections under climate change, but so may training LSTMs to a large, diverse set of watersheds.more » « less
- 
            For a number of years since their introduction to hydrology, recurrent neural networks like long short-term memory (LSTM) networks have proven remarkably difficult to surpass in terms of daily hydrograph metrics on community-shared benchmarks. Outside of hydrology, Transformers have now become the model of choice for sequential prediction tasks, making it a curious architecture to investigate for application to hydrology. Here, we first show that a vanilla (basic) Transformer architecture is not competitive against LSTM on the widely benchmarked CAMELS streamflow dataset, and lagged especially prominently for the high-flow metrics, perhaps due to the lack of memory mechanisms. However, a recurrence-free variant of the Transformer model can obtain mixed comparisons with LSTM, producing very slightly higher Kling-Gupta efficiency coefficients (KGE), along with other metrics. The lack of advantages for the vanilla Transformer network is linked to the nature of hydrologic processes. Additionally, similar to LSTM, the Transformer can also merge multiple meteorological forcing datasets to improve model performance. Therefore, the modified Transformer represents a rare competitive architecture to LSTM in rigorous benchmarks. Valuable lessons were learned: (1) the basic Transformer architecture is not suitable for hydrologic modeling; (2) the recurrence-free modification is beneficial so future work should continue to test such modifications; and (3) the performance of state-of-the-art models may be close to the prediction limits of the dataset. As a non-recurrent model, the Transformer may bear scale advantages for learning from bigger datasets and storing knowledge. This work lays the groundwork for future explorations into pretraining models, serving as a foundational benchmark that underscores the potential benefits in hydrology.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    