skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Broadband Absorption in Patterned Metal/Weakly-Absorbing-Spacer/Metal with Graded Photonic Super-Crystal
It is challenging to realize the complete broadband absorption of near-infrared in thin optical devices. In this paper, we studied high light absorption in two devices: a stack of Au-pattern/insulator/Au-film and a stack of Au-pattern/weakly-absorbing-material/Au-film where the Au-pattern was structured in graded photonic super-crystal. We observed multiple-band absorption, including one near 1500 nm, in a stack of Au-pattern/spacer/Au-film. The multiple-band absorption is due to the gap surface plasmon polariton when the spacer thickness is less than 30 nm. Broadband absorption appears in the near-infrared when the insulator spacer is replaced by a weakly absorbing material. E-field intensity was simulated and confirmed the formation of gap surface plasmon polaritons and their coupling with Fabry–Pérot resonance.  more » « less
Award ID(s):
1661842
PAR ID:
10299575
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Photonics
Volume:
8
Issue:
4
ISSN:
2304-6732
Page Range / eLocation ID:
114
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The optical conductivity of single layer graphene (SLG) can be significantly and reversibly modified when the Fermi level is tuned by electrical gating. However, so far this interesting property has rarely been applied to free-space two-dimensional (2D) photonic devices because the surface-incident absolute absorption of SLG is limited to 1%–2%. No significant change in either reflectance or transmittance would be observed even if SLG is made transparent upon gating. To achieve significantly enhanced surface-incident optical absorption in SLG in a device structure that also allows gating, here we embed SLG in an optical slot-antenna-coupled cavity (SAC) framework, simultaneously enhancing SLG absorption by up to 20 times and potentially enabling electrical gating of SLG as a step towards tunable 2D photonic surfaces. This framework synergistically integrates near-field enhancement induced by ultrahigh refractive index semimetal slot-antenna with broadband resonances in visible and infrared regimes, ~ 3 times more effective than a vertical cavity structure alone. An example of this framework consists of self-assembled, close-packed Sn nanodots separated by ~ 10 nm nanogaps on a SLG/SiO2/Al stack, which dramatically increases SLG optical absorption to 10%-25% at λ = 600–1,900 nm. The enhanced SLG absorption spectrum can also be controlled by the insulator thickness. For example, SLG embedded in this framework with a 150 nm-thick SiO2 insulating layer displays a distinctive red color in contrast to its surrounding regions without SLG on the same sample under white light illumination. This opens a potential path towards gate-tunable spectral reflectors. Overall, this work initiates a new approach towards tunable 2D photonic surfaces. 
    more » « less
  2. Plasmonic response in metals, defined as the ability to support subwavelength confinement of surface plasmon modes, is typically limited to a narrow frequency range below the metals’ plasma frequency. This places severe limitations on the operational wavelengths of plasmonic materials and devices. However, when the volume of a metal film is massively decreased, highly confined quasi-two-dimensional surface plasmon modes can be supported out to wavelengths well beyond the plasma wavelength. While this has, thus far, been achieved using ultrathin (nm-scale) metals, such films are quite difficult to realize and suffer from even higher losses than bulk plasmonic films. To extend the plasmonic response to the infrared, here we introduce the concept of metaplasmonics, representing a novel plasmonic modality with a host of appealing properties. By fabricating and characterizing a series of metaplasmonic nanoribbons, we demonstrate large confinement, high-quality factors, and large near-field enhancements across a broad wavelength range, extending well beyond the limited bandwidth of traditional plasmonic materials. We demonstrate 35× plasmon wavelength reduction, and numerical simulations suggest that further wavelength reduction, up to a factor of 150, is achievable using our approach. The demonstration of the metaplasmonics paradigm offers a promising path to fill the near- and mid-infrared technological gap for high-quality plasmonic materials and provides a new material system to study the effects of extreme plasmonic confinement for applications in nonlinear and quantum plasmonics. 
    more » « less
  3. Abstract New light is shed on the previously known perovskite material, Cs2Au2I6, as a potential active material for high‐efficiency thin‐film Pb‐free photovoltaic cells. First‐principles calculations demonstrate that Cs2Au2I6has an optimal band gap that is close to the Shockley–Queisser value. The band gap size is governed by intermediate band formation. Charge disproportionation on Au makes Cs2Au2I6a double‐perovskite material, although it is stoichiometrically a single perovskite. In contrast to most previously discussed double perovskites, Cs2Au2I6has a direct‐band‐gap feature, and optical simulation predicts that a very thin layer of active material is sufficient to achieve a high photoconversion efficiency using a polycrystalline film layer. The already confirmed synthesizability of this material, coupled with the state‐of‐the‐art multiscale simulations connecting from the material to the device, strongly suggests that Cs2Au2I6will serve as the active material in highly efficient, nontoxic, and thin‐film perovskite solar cells in the very near future. 
    more » « less
  4. Abstract Pyroelectric detectors are often broadband and require external filters for wavelength‐specific applications. This paper reports a tunable, narrowband, and lightweight pyroelectric infrared detector built upon a flexible membrane of As2S3−Ag−P(VDF‐TrFE) with subwavelength grating, which is capable of both on‐chip filtering and photopyroelectric energy conversion. The top surface of this hybrid membrane is a corrugated As2S3−Ag film contributing to narrowband light absorption in the near‐infrared (NIR) regime, and the bottom part is a polyvinylidene fluoride‐trifluoroethylene (PVDF‐TrFE) membrane for the conversion of the absorbed light to an electrical signal. Uniquely, applying a bias voltage to the PVDF‐TrFE membrane enables the tuning of the device's absorption and pyroelectric characteristics owing to the piezoelectrically induced mechanical bending. The resonator exhibited a resonant absorption coefficient of 80% and a full‐width‐half‐maximum of 15 nm within the NIR, a responsivity of 1.4 mV mW−1, and an equivalent noise power of 13 µW Hz−1/2at 1560 nm. By applying a 15‐V bias to the PVDF‐TrFE membrane, the absorption coefficient decreased to 18% due to the change in the grating period and incident angle. The narrowband and tunable features of the As2S3−Ag−P(VDF‐TrFE) pyroelectric detector will benefit a variety of potential applications in sensors, optical spectroscopy, and imaging. 
    more » « less
  5. We report on the near-infrared intersubband (ISB) absorption properties of strain-free Sc0.14Al0.86N/GaN multiple quantum wells (MQWs) grown on c-plane GaN substrates by molecular beam epitaxy. These MQWs exhibit strong, sharp, and tunable absorption energies between 515 meV and 709 meV, for well widths ranging from 7 nm to 1.5 nm, respectively. Observation of ISB absorption in ultra-thin Sc0.14Al0.86N/GaN MQWs not only extends the near-infrared range accessible with Sc-containing nitrides but also highlights the challenges of growing nanometer-thick GaN quantum wells. We explore the effects of growth temperature on absorption characteristics and find that substrate temperatures above 600°C significantly enhance ISB absorption intensity but also introduce an energy redshift for the narrowest wells. The redshift is attributed to increased interface roughness due to ScAlN surface morphology degradation at higher temperatures. Additionally, a comparison of experimental results with simulated band-structures indicates that the magnitude of net polarization rises faster with Sc-composition than previously suggested by theoretical calculations. This study advances the prospects of ScAlN/GaN heterostructures for novel photonic devices in the technologically important near-infrared range. 
    more » « less