Recently, an electromechanical metamaterial with integrated resonant circuit elements was developed that enables on-demand tailoring of the operating frequency and interface routes for topological wave transmission. However, limitations to the operating frequency region still exist, and a full exploration of the adaptive characteristics of the topological electromechanical metamaterial has yet to be undertaken. To advance the state of the art, this study investigates the ability to enhance the range of operating frequencies for topological wave transmission in a piezoelectric metamaterial by the reconfiguration of lattice symmetries and connection of negative capacitance circuitry. In addition, the capability to modify the interfacemore »
Broadband Frequency and Spatial On-Demand Tailoring of Topological Wave Propagation Harnessing Piezoelectric Metamaterials
Many engineering applications leverage metamaterials to achieve elastic wave control. To enhance the performance and expand the functionalities of elastic waveguides, the concepts of electronic transport in topological insulators have been applied to elastic metamaterials. Initial studies showed that topologically protected elastic wave transmission in mechanical metamaterials could be realized that is immune to backscattering and undesired localization in the presence of defects or disorder. Recent studies have developed tunable topological elastic metamaterials to maximize performance in the presence of varying external conditions, adapt to changing operating requirements, and enable new functionalities such as a programmable wave path. However, a challenge remains to achieve a tunable topological metamaterial that is comprehensively adaptable in both the frequency and spatial domains and is effective over a broad frequency bandwidth that includes a subwavelength regime. To advance the state of the art, this research presents a piezoelectric metamaterial with the capability to concurrently tailor the frequency, path, and mode shape of topological waves using resonant circuitry. In the research presented in this manuscript, the plane wave expansion method is used to detect a frequency tunable subwavelength Dirac point in the band structure of the periodic unit cell and discover an operating region over more »
- Award ID(s):
- 1661568
- Publication Date:
- NSF-PAR ID:
- 10299732
- Journal Name:
- Frontiers in Materials
- Volume:
- 7
- ISSN:
- 2296-8016
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
4D printed shape memory metamaterial for vibration bandgap switching and active elastic-wave guidingAcoustic/elastic metamaterials that rely on engineered microstructures instead of chemical composition enable a rich variety of extraordinary effective properties that are suited for various applications including vibration/noise isolation, high-resolution medical imaging, and energy harvesting and mitigation. However, the static nature of these elastic wave guides limits their potential for active elastic-wave guiding, as microstructure transformation remains a challenge to effectively apply in traditional elastic metamaterials due to the interplay of polarization and structural sensitivity. Here, a tunable, locally resonant structural waveguide is proposed and demonstrated for active vibration bandgap switching and elastic-wave manipulation between 1000–4000 Hz based on 3D printedmore »
-
Abstract Controlling and manipulating elastic/acoustic waves via artificially structured metamaterials, phononic crystals, and metasurfaces have gained an increasing research interest in the last decades. Unlike others, a metasurface is a single layer in the host medium with an array of subwavelength-scaled patterns introducing an abrupt phase shift in the wave propagation path. In this study, an elastic metasurface composed of an array of slender beam resonators is proposed to control the elastic wavefront of low-frequency flexural waves. The phase gradient based on Snell’s law is achieved by tailoring the thickness of thin beam resonators connecting two elastic host media. Throughmore »
-
Abstract Demonstration of topological boundary modes in elastic systems has attracted a great deal of attention over the past few years due to its unique protection characteristic. Recently, second-order topological insulators have been proposed in manipulating the topologically protected localized states emerging only at corners. Here, we numerically and experimentally study corner states in a two-dimensional phononic crystal, namely a continuous elastic plate with embedded bolts in a hexagonal pattern. We create interfacial corners by adjoining trivial and non-trivial topological configurations. Due to the rich interaction between the bolts and the continuous elastic plate, we find a variety of cornermore »
-
Metamaterials represent a class of artificially engineered materials, which exhibit unprecedented properties enabled by their constituent subwavelength unit cells. The effective properties of metamaterials may be dynamically controlled by driving unit cells via different approaches, including photo-doping, electrical gating, or mechanical actuation. With such dynamical tuning mechanisms, the propagation modality of electromagnetic waves may be modulated to achieve functional devices for modulation, beam steering, focusing, and polarization control, among others. In addition, the perfect absorption and near field effect enabled by metamaterials may be used in electromagnetic detectors across the frequency spectrum. Microsystem technology provides a platform to achieve functionalmore »