skip to main content


Search for: All records

Award ID contains: 1661568

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Many engineering applications leverage metamaterials to achieve elastic wave control. To enhance the performance and expand the functionalities of elastic waveguides, the concepts of electronic transport in topological insulators have been applied to elastic metamaterials. Initial studies showed that topologically protected elastic wave transmission in mechanical metamaterials could be realized that is immune to backscattering and undesired localization in the presence of defects or disorder. Recent studies have developed tunable topological elastic metamaterials to maximize performance in the presence of varying external conditions, adapt to changing operating requirements, and enable new functionalities such as a programmable wave path. However, a challenge remains to achieve a tunable topological metamaterial that is comprehensively adaptable in both the frequency and spatial domains and is effective over a broad frequency bandwidth that includes a subwavelength regime. To advance the state of the art, this research presents a piezoelectric metamaterial with the capability to concurrently tailor the frequency, path, and mode shape of topological waves using resonant circuitry. In the research presented in this manuscript, the plane wave expansion method is used to detect a frequency tunable subwavelength Dirac point in the band structure of the periodic unit cell and discover an operating region over which topological wave propagation can exist. Dispersion analyses for a finite strip illuminate how circuit parameters can be utilized to adjust mode shapes corresponding to topological edge states. A further evaluation provides insight into how increased electromechanical coupling and lattice reconfiguration can be exploited to enhance the frequency range for topological wave propagation, increase achievable mode localization, and attain additional edge states. Topological guided wave propagation that is subwavelength in nature and adaptive in path, localization, and frequency is illustrated in numerical simulations of thin plate structures. Outcomes from the presented work indicate that the easily integrable and comprehensively tunable proposed metamaterial could be employed in applications requiring a multitude of functions over a broad frequency bandwidth. 
    more » « less
  2. null (Ed.)
    Recently, an electromechanical metamaterial with integrated resonant circuit elements was developed that enables on-demand tailoring of the operating frequency and interface routes for topological wave transmission. However, limitations to the operating frequency region still exist, and a full exploration of the adaptive characteristics of the topological electromechanical metamaterial has yet to be undertaken. To advance the state of the art, this study investigates the ability to enhance the range of operating frequencies for topological wave transmission in a piezoelectric metamaterial by the reconfiguration of lattice symmetries and connection of negative capacitance circuitry. In addition, the capability to modify the interface mode localization is analyzed. The plane wave expansion method is utilized to define a working frequency region for protected topological wave transmission by evaluating a local topological charge. Numerical simulations verify the existence of topologically protected interface modes and illuminate how the localization and shape of these modes can be altered via external circuit parameters. Results show that the reconfiguration of the lattice structure and connection to negative capacitance circuity enhances the operating frequency bandwidth and interface mode localization control, greatly expanding the adaptive metamaterial capabilities. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)