Abstract For any subset$$Z \subseteq {\mathbb {Q}}$$, consider the set$$S_Z$$of subfields$$L\subseteq {\overline {\mathbb {Q}}}$$which contain a co-infinite subset$$C \subseteq L$$that is universally definable inLsuch that$$C \cap {\mathbb {Q}}=Z$$. Placing a natural topology on the set$${\operatorname {Sub}({\overline {\mathbb {Q}}})}$$of subfields of$${\overline {\mathbb {Q}}}$$, we show that ifZis not thin in$${\mathbb {Q}}$$, then$$S_Z$$is meager in$${\operatorname {Sub}({\overline {\mathbb {Q}}})}$$. Here,thinandmeagerboth mean “small”, in terms of arithmetic geometry and topology, respectively. For example, this implies that only a meager set of fieldsLhave the property that the ring of algebraic integers$$\mathcal {O}_L$$is universally definable inL. The main tools are Hilbert’s Irreducibility Theorem and a new normal form theorem for existential definitions. The normal form theorem, which may be of independent interest, says roughly that every$$\exists $$-definable subset of an algebraic extension of$${\mathbb Q}$$is a finite union of single points and projections of hypersurfaces defined by absolutely irreducible polynomials. 
                        more » 
                        « less   
                    
                            
                            Hodge decomposition of string topology
                        
                    
    
            Abstract Let X be a simply connected closed oriented manifold of rationally elliptic homotopy type. We prove that the string topology bracket on the $S^1$ -equivariant homology $$ {\overline {\text {H}}}_\ast ^{S^1}({\mathcal {L}} X,{\mathbb {Q}}) $$ of the free loop space of X preserves the Hodge decomposition of $$ {\overline {\text {H}}}_\ast ^{S^1}({\mathcal {L}} X,{\mathbb {Q}}) $$ , making it a bigraded Lie algebra. We deduce this result from a general theorem on derived Poisson structures on the universal enveloping algebras of homologically nilpotent finite-dimensional DG Lie algebras. Our theorem settles a conjecture of [7]. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1702323
- PAR ID:
- 10299862
- Date Published:
- Journal Name:
- Forum of Mathematics, Sigma
- Volume:
- 9
- ISSN:
- 2050-5094
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            In this paper, we show that the finite subalgebra A R ( 1 ) \mathcal {A}^\mathbb {R}(1) , generated by S q 1 \mathrm {Sq}^1 and S q 2 \mathrm {Sq}^2 , of the R \mathbb {R} -motivic Steenrod algebra A R \mathcal {A}^\mathbb {R} can be given 128 different A R \mathcal {A}^\mathbb {R} -module structures. We also show that all of these A \mathcal {A} -modules can be realized as the cohomology of a 2 2 -local finite R \mathbb {R} -motivic spectrum. The realization results are obtained using an R \mathbb {R} -motivic analogue of the Toda realization theorem. We notice that each realization of A R ( 1 ) \mathcal {A}^\mathbb {R}(1) can be expressed as a cofiber of an R \mathbb {R} -motivic v 1 v_1 -self-map. The C 2 {\mathrm {C}_2} -equivariant analogue of the above results then follows because of the Betti realization functor. We identify a relationship between the R O ( C 2 ) \mathrm {RO}({\mathrm {C}_2}) -graded Steenrod operations on a C 2 {\mathrm {C}_2} -equivariant space and the classical Steenrod operations on both its underlying space and its fixed-points. This technique is then used to identify the geometric fixed-point spectra of the C 2 {\mathrm {C}_2} -equivariant realizations of A C 2 ( 1 ) \mathcal {A}^{\mathrm {C}_2}(1) . We find another application of the R \mathbb {R} -motivic Toda realization theorem: we produce an R \mathbb {R} -motivic, and consequently a C 2 {\mathrm {C}_2} -equivariant, analogue of the Bhattacharya-Egger spectrum Z \mathcal {Z} , which could be of independent interest.more » « less
- 
            Abstract Using the invariant theory of arc spaces, we find minimal strong generating sets for certain cosets of affine vertex algebras inside free field algebras that are related to classical Howe duality. These results have several applications. First, for any vertex algebra $${{\mathcal {V}}}$$, we have a surjective homomorphism of differential algebras $$\mathbb {C}[J_{\infty }(X_{{{\mathcal {V}}}})] \rightarrow \text {gr}^{F}({{\mathcal {V}}})$$; equivalently, the singular support of $${{\mathcal {V}}}$$ is a closed subscheme of the arc space of the associated scheme $$X_{{{\mathcal {V}}}}$$. We give many new examples of classically free vertex algebras (i.e., this map is an isomorphism), including $$L_{k}({{\mathfrak {s}}}{{\mathfrak {p}}}_{2n})$$ for all positive integers $$n$$ and $$k$$. We also give new examples where the kernel of this map is nontrivial but is finitely generated as a differential ideal. Next, we prove a coset realization of the subregular $${{\mathcal {W}}}$$-algebra of $${{\mathfrak {s}}}{{\mathfrak {l}}}_{n}$$ at a critical level that was previously conjectured by Creutzig, Gao, and the 1st author. Finally, we give some new level-rank dualities involving affine vertex superalgebras.more » « less
- 
            We study the query complexity of finding the set of all Nash equilibria\(\mathcal {X}_\ast \times \mathcal {Y}_\ast \)in two-player zero-sum matrix games. Fearnley and Savani [18] showed that for any randomized algorithm, there exists ann×ninput matrix where it needs to queryΩ(n2) entries in expectation to compute asingleNash equilibrium. On the other hand, Bienstock et al. [5] showed that there is a special class of matrices for which one can queryO(n) entries and compute its set of all Nash equilibria. However, these results do not fully characterize the query complexity of finding the set of all Nash equilibria in two-player zero-sum matrix games. In this work, we characterize the query complexity of finding the set of all Nash equilibria\(\mathcal {X}_\ast \times \mathcal {Y}_\ast \)in terms of the number of rowsnof the input matrix\(A \in \mathbb {R}^{n \times n} \), row support size\(k_1 := |\bigcup \limits _{x \in \mathcal {X}_\ast } \text{supp}(x)| \), and column support size\(k_2 := |\bigcup \limits _{y \in \mathcal {Y}_\ast } \text{supp}(y)| \). We design a simple yet non-trivial randomized algorithm that returns the set of all Nash equilibria\(\mathcal {X}_\ast \times \mathcal {Y}_\ast \)by querying at mostO(nk5· polylog(n)) entries of the input matrix\(A \in \mathbb {R}^{n \times n} \)in expectation, wherek≔ max{k1,k2}. This upper bound is tight up to a factor of poly(k), as we show that for any randomized algorithm, there exists ann×ninput matrix with min {k1,k2} = 1, for which it needs to queryΩ(nk) entries in expectation in order to find the set of all Nash equilibria\(\mathcal {X}_\ast \times \mathcal {Y}_\ast \).more » « less
- 
            null (Ed.)Abstract The elliptic algebras in the title are connected graded $$\mathbb {C}$$ -algebras, denoted $$Q_{n,k}(E,\tau )$$ , depending on a pair of relatively prime integers $$n>k\ge 1$$ , an elliptic curve E and a point $$\tau \in E$$ . This paper examines a canonical homomorphism from $$Q_{n,k}(E,\tau )$$ to the twisted homogeneous coordinate ring $$B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$$ on the characteristic variety $$X_{n/k}$$ for $$Q_{n,k}(E,\tau )$$ . When $$X_{n/k}$$ is isomorphic to $E^g$ or the symmetric power $S^gE$ , we show that the homomorphism $$Q_{n,k}(E,\tau ) \to B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$$ is surjective, the relations for $$B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$$ are generated in degrees $$\le 3$$ and the noncommutative scheme $$\mathrm {Proj}_{nc}(Q_{n,k}(E,\tau ))$$ has a closed subvariety that is isomorphic to $E^g$ or $S^gE$ , respectively. When $$X_{n/k}=E^g$$ and $$\tau =0$$ , the results about $$B(X_{n/k},\sigma ',\mathcal {L}^{\prime }_{n/k})$$ show that the morphism $$\Phi _{|\mathcal {L}_{n/k}|}:E^g \to \mathbb {P}^{n-1}$$ embeds $E^g$ as a projectively normal subvariety that is a scheme-theoretic intersection of quadric and cubic hypersurfaces.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    