skip to main content


Title: On realizations of the subalgebra 𝒜^{ℝ}(1) of the ℝ-motivic Steenrod algebra
In this paper, we show that the finite subalgebra A R ( 1 ) \mathcal {A}^\mathbb {R}(1) , generated by S q 1 \mathrm {Sq}^1 and S q 2 \mathrm {Sq}^2 , of the R \mathbb {R} -motivic Steenrod algebra A R \mathcal {A}^\mathbb {R} can be given 128 different A R \mathcal {A}^\mathbb {R} -module structures. We also show that all of these A \mathcal {A} -modules can be realized as the cohomology of a 2 2 -local finite R \mathbb {R} -motivic spectrum. The realization results are obtained using an R \mathbb {R} -motivic analogue of the Toda realization theorem. We notice that each realization of A R ( 1 ) \mathcal {A}^\mathbb {R}(1) can be expressed as a cofiber of an R \mathbb {R} -motivic v 1 v_1 -self-map. The C 2 {\mathrm {C}_2} -equivariant analogue of the above results then follows because of the Betti realization functor. We identify a relationship between the R O ( C 2 ) \mathrm {RO}({\mathrm {C}_2}) -graded Steenrod operations on a C 2 {\mathrm {C}_2} -equivariant space and the classical Steenrod operations on both its underlying space and its fixed-points. This technique is then used to identify the geometric fixed-point spectra of the C 2 {\mathrm {C}_2} -equivariant realizations of A C 2 ( 1 ) \mathcal {A}^{\mathrm {C}_2}(1) . We find another application of the R \mathbb {R} -motivic Toda realization theorem: we produce an R \mathbb {R} -motivic, and consequently a C 2 {\mathrm {C}_2} -equivariant, analogue of the Bhattacharya-Egger spectrum Z \mathcal {Z} , which could be of independent interest.  more » « less
Award ID(s):
2003204
NSF-PAR ID:
10342033
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Transactions of the American Mathematical Society, Series B
Volume:
9
Issue:
23
ISSN:
2330-0000
Page Range / eLocation ID:
700 to 732
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Let X be a simply connected closed oriented manifold of rationally elliptic homotopy type. We prove that the string topology bracket on the $S^1$ -equivariant homology $ {\overline {\text {H}}}_\ast ^{S^1}({\mathcal {L}} X,{\mathbb {Q}}) $ of the free loop space of X preserves the Hodge decomposition of $ {\overline {\text {H}}}_\ast ^{S^1}({\mathcal {L}} X,{\mathbb {Q}}) $ , making it a bigraded Lie algebra. We deduce this result from a general theorem on derived Poisson structures on the universal enveloping algebras of homologically nilpotent finite-dimensional DG Lie algebras. Our theorem settles a conjecture of [7]. 
    more » « less
  2. In previous work [7], the authors constructed and studied a lift of the Galois correspondence to stable homotopy categories. In particular, if L/k is a finite Galois extension of fields with Galois group G, there is a functor c∗L/k : SHG → SHk from the G-equivariant stable homotopy category to the stable motivic homotopy category over k such that c∗L/k(G/H+) = Spec(LH)+. The main theorem of [7] says that when k is a real closed field and L = k[i], the restriction of c∗L/k to the η-complete subcategory is full and faithful. Here we “uncomplete” this theorem so that it applies to c∗L/k itself. Our main tools are Bachmann’s theorem on the (2,η)- periodic stable motivic homotopy category and an isomorphism range for the map πRS → πC2 S induced by C2-equivariant Betti realization. 
    more » « less
  3. null (Ed.)
    Abstract We construct a $(\mathfrak {gl}_2, B(\mathbb {Q}_p))$ and Hecke-equivariant cup product pairing between overconvergent modular forms and the local cohomology at $0$ of a sheaf on $\mathbb {P}^1$ , landing in the compactly supported completed $\mathbb {C}_p$ -cohomology of the modular curve. The local cohomology group is a highest-weight Verma module, and the cup product is non-trivial on a highest-weight vector for any overconvergent modular form of infinitesimal weight not equal to $1$ . For classical weight $k\geq 2$ , the Verma has an algebraic quotient $H^1(\mathbb {P}^1, \mathcal {O}(-k))$ , and on classical forms, the pairing factors through this quotient, giving a geometric description of ‘half’ of the locally algebraic vectors in completed cohomology; the other half is described by a pairing with the roles of $H^1$ and $H^0$ reversed between the modular curve and $\mathbb {P}^1$ . Under minor assumptions, we deduce a conjecture of Gouvea on the Hodge-Tate-Sen weights of Galois representations attached to overconvergent modular forms. Our main results are essentially a strict subset of those obtained independently by Lue Pan, but the perspective here is different, and the proofs are short and use simple tools: a Mayer-Vietoris cover, a cup product, and a boundary map in group cohomology. 
    more » « less
  4. Abstract The goal of this paper is to generalise, refine and improve results on large intersections from [2, 8]. We show that if G is a countable discrete abelian group and $\varphi , \psi : G \to G$ are homomorphisms, such that at least two of the three subgroups $\varphi (G)$ , $\psi (G)$ and $(\psi -\varphi )(G)$ have finite index in G , then $\{\varphi , \psi \}$ has the large intersections property . That is, for any ergodic measure preserving system $\textbf {X}=(X,\mathcal {X},\mu ,(T_g)_{g\in G})$ , any $A\in \mathcal {X}$ and any $\varepsilon>0$ , the set $$ \begin{align*} \{g\in G : \mu(A\cap T_{\varphi(g)}^{-1} A \cap T_{\psi(g)}^{-1} A)>\mu(A)^3-\varepsilon\} \end{align*} $$ is syndetic (Theorem 1.11). Moreover, in the special case where $\varphi (g)=ag$ and $\psi (g)=bg$ for $a,b\in \mathbb {Z}$ , we show that we only need one of the groups $aG$ , $bG$ or $(b-a)G$ to be of finite index in G (Theorem 1.13), and we show that the property fails, in general, if all three groups are of infinite index (Theorem 1.14). One particularly interesting case is where $G=(\mathbb {Q}_{>0},\cdot )$ and $\varphi (g)=g$ , $\psi (g)=g^2$ , which leads to a multiplicative version of the Khintchine-type recurrence result in [8]. We also completely characterise the pairs of homomorphisms $\varphi ,\psi $ that have the large intersections property when $G = {{\mathbb Z}}^2$ . The proofs of our main results rely on analysis of the structure of the universal characteristic factor for the multiple ergodic averages $$ \begin{align*} \frac{1}{|\Phi_N|} \sum_{g\in \Phi_N}T_{\varphi(g)}f_1\cdot T_{\psi(g)} f_2. \end{align*} $$ In the case where G is finitely generated, the characteristic factor for such averages is the Kronecker factor . In this paper, we study actions of groups that are not necessarily finitely generated, showing, in particular, that, by passing to an extension of $\textbf {X}$ , one can describe the characteristic factor in terms of the Conze–Lesigne factor and the $\sigma $ -algebras of $\varphi (G)$ and $\psi (G)$ invariant functions (Theorem 4.10). 
    more » « less
  5. Abstract

    For any subset$Z \subseteq {\mathbb {Q}}$, consider the set$S_Z$of subfields$L\subseteq {\overline {\mathbb {Q}}}$which contain a co-infinite subset$C \subseteq L$that is universally definable inLsuch that$C \cap {\mathbb {Q}}=Z$. Placing a natural topology on the set${\operatorname {Sub}({\overline {\mathbb {Q}}})}$of subfields of${\overline {\mathbb {Q}}}$, we show that ifZis not thin in${\mathbb {Q}}$, then$S_Z$is meager in${\operatorname {Sub}({\overline {\mathbb {Q}}})}$. Here,thinandmeagerboth mean “small”, in terms of arithmetic geometry and topology, respectively. For example, this implies that only a meager set of fieldsLhave the property that the ring of algebraic integers$\mathcal {O}_L$is universally definable inL. The main tools are Hilbert’s Irreducibility Theorem and a new normal form theorem for existential definitions. The normal form theorem, which may be of independent interest, says roughly that every$\exists $-definable subset of an algebraic extension of${\mathbb Q}$is a finite union of single points and projections of hypersurfaces defined by absolutely irreducible polynomials.

     
    more » « less