skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Representation Homology of Topological Spaces
Abstract In this paper, we introduce and study representation homology of topological spaces, which is a natural homological extension of representation varieties of fundamental groups. We give an elementary construction of representation homology parallel to the Loday–Pirashvili construction of higher Hochschild homology; in fact, we establish a direct geometric relation between the two theories by proving that the representation homology of the suspension of a (pointed connected) space is isomorphic to its higher Hochschild homology. We also construct some natural maps and spectral sequences relating representation homology to other homology theories associated with spaces (such as Pontryagin algebras, $${{\mathbb{S}}}^1$$-equivariant homology of the free loop space, and stable homology of automorphism groups of f.g. free groups). We compute representation homology explicitly (in terms of known invariants) in a number of interesting cases, including spheres, suspensions, complex projective spaces, Riemann surfaces, and some 3-dimensional manifolds, such as link complements in $${\mathbb{R}}^3$$ and the lens spaces $ L(p,q) $. In the case of link complements, we identify the representation homology in terms of ordinary Hochschild homology, which gives a new algebraic invariant of links in $${\mathbb{R}}^3$$.  more » « less
Award ID(s):
1702323
PAR ID:
10299865
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Mathematics Research Notices
ISSN:
1073-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We construct a stable homotopy refinement of quantum annular homology, a link homology theory introduced by Beliakova, Putyra and Wehrli. For each $$r\geq ~2$$ we associate to an annular link $$L$$ a naive $$\mathbb {Z}/r\mathbb {Z}$$ -equivariant spectrum whose cohomology is isomorphic to the quantum annular homology of $$L$$ as modules over $$\mathbb {Z}[\mathbb {Z}/r\mathbb {Z}]$$ . The construction relies on an equivariant version of the Burnside category approach of Lawson, Lipshitz and Sarkar. The quotient under the cyclic group action is shown to recover the stable homotopy refinement of annular Khovanov homology. We study spectrum level lifts of structural properties of quantum annular homology. 
    more » « less
  2. We undertake a systematic study of the Hochschild homology, i.e. (the geometric realization of) the cyclic nerve, of -categories (and more generally of category-objects in an ∞-category), as a version of factorization homology. In order to do this, we codify -categories in terms of quiver representations in them. By examining a universal instance of such Hochschild homology, we explicitly identify its natural symmetries, and construct a non-stable version of the cyclotomic trace map. Along the way we give a unified account of the cyclic, paracyclic, and epicyclic categories. We also prove that this gives a combinatorial description of the case of factorization homology as presented in [4], which parametrizes -categories by solidly 1-framed stratified spaces. 
    more » « less
  3. Let $$V_1, V_2, V_3, \dots $$ be a sequence of $$\mathbb {Q}$$-vector spaces where $$V_n$$ carries an action of $$\mathfrak{S}_n$$. Representation stability and multiplicity stability are two related notions of when the sequence $$V_n$$ has a limit. An important source of stability phenomena arises when $$V_n$$ is the $$d^{th}$$ homology group (for fixed $$d$$) of the configuration space of $$n$$ distinct points in some fixed topological space $$X$$. We replace these configuration spaces with moduli spaces of tuples $$(W_1, \dots, W_n)$$ of subspaces of a fixed complex vector space $$\mathbb {C}^N$$ such that $$W_1 + \cdots + W_n = \mathbb {C}^N$$. These include the varieties of spanning line configurations which are tied to the Delta Conjecture of symmetric function theory. 
    more » « less
  4. We investigate representations of Coxeter groups into\mathrm{GL}(n,\mathbb{R})as geometric reflection groups which are convex cocompact in the projective space\mathbb{P}(\mathbb{R}^{n}). We characterize which Coxeter groups admit such representations, and we fully describe the corresponding spaces of convex cocompact representations as reflection groups, in terms of the associated Cartan matrices. The Coxeter groups that appear include all infinite word hyperbolic Coxeter groups; for such groups, the representations as reflection groups that we describe are exactly the projective Anosov ones. We also obtain a large class of nonhyperbolic Coxeter groups, thus providing many examples for the theory of nonhyperbolic convex cocompact subgroups in\mathbb{P}(\mathbb{R}^{n})developed by Danciger–Guéritaud–Kassel (2024). 
    more » « less
  5. null (Ed.)
    Abstract We show that the integer homology sphere obtained by splicing two nontrivial knot complements in integer homology sphere L-spaces has Heegaard Floer homology of rank strictly greater than one. In particular, splicing the complements of nontrivial knots in the 3-sphere never produces an L-space. The proof uses bordered Floer homology. 
    more » « less