null
(Ed.)
Let $$\unicode[STIX]{x1D719}$$ be a post-critically finite branched covering of a two-sphere. By work of Koch, the Thurston pullback map induced by $$\unicode[STIX]{x1D719}$$ on Teichmüller space descends to a multivalued self-map—a Hurwitz correspondence $${\mathcal{H}}_{\unicode[STIX]{x1D719}}$$ —of the moduli space $${\mathcal{M}}_{0,\mathbf{P}}$$ . We study the dynamics of Hurwitz correspondences via numerical invariants called dynamical degrees . We show that the sequence of dynamical degrees of $${\mathcal{H}}_{\unicode[STIX]{x1D719}}$$ is always non-increasing and that the behavior of this sequence is constrained by the behavior of $$\unicode[STIX]{x1D719}$$ at and near points of its post-critical set.
more »
« less
An official website of the United States government

