In quantum mechanics, supersymmetry (SUSY) posits an equivalence between two elementary degrees of freedom, bosons, and fermions defined by local rules. Here we apply it to find connections between bosonic and fermionic lattice models in the realm of condensed-matter physics and uncover a novel fivefold way topology it demands in these systems. At the single-particle level, our connections pair a bosonic and fermionic lattice model, either describing the hopping of number-conserving particles or local couplings between fermion parity-conserving particles. The pair are isospectral except for zero modes, such as flat bands, quadratic band touchings, and nexus points, whose existence is undergirded by the Witten index of the SUSY theory. We develop a unifying framework to formulate these SUSY connections in terms of general lattice graph correspondences. Notably, in this framework, the supercharge operator that generates SUSY is Hermitian and can itself be interpreted as a hopping Hamiltonian on a bipartite lattice, a feature that enables the discovery of materials or model lattices hosting the SUSY partners. To illustrate the power of SUSY, we present 16 use cases of SUSY, that span topics including frustrated magnets, Kitaev spin liquids, and topological superconductors, the majority of which turn out to provide insights into the discovery and design of flat bands and topological materials. Published by the American Physical Society2024
more »
« less
Supersymmetry on the lattice: Geometry, Topology, and Spin Liquids
In quantum mechanics, supersymmetry (SUSY) posits an equivalence between two elementary degrees of freedom, bosons and fermions. Here we show how this fundamental concept can be applied to connect bosonic and fermionic lattice models in the realm of condensed matter physics, e.g., to identify a variety of (bosonic) phonon and magnon lattice models which admit topologically nontrivial free fermion models as superpartners. At the single-particle level, the bosonic and the fermionic models that are generated by the SUSY are isospectral except for zero modes, such as flat bands, whose existence is undergirded by the Witten index of the SUSY theory. We develop a unifying framework to formulate these SUSY connections in terms of general lattice graph correspondences and discuss further ramifications such as the definition of supersymmetric topological invariants for generic bosonic systems. Notably, a Hermitian form of the supercharge operator, the generator of the SUSY, can itself be interpreted as a hopping Hamiltonian on a bipartite lattice. This allows us to identify a wide class of interconnected lattices whose tight-binding Hamiltonians are superpartners of one another or can be derived via squaring or square-rooting their energy spectra all the while preserving band topology features. We introduce a five-fold way symmetry classification scheme of these SUSY lattice correspondences, including cases with a non-zero Witten index, based on a topological classification of the underlying Hermitian supercharge operator. These concepts are illustrated for various explicit examples including frustrated magnets, Kitaev spin liquids, and topological superconductors.
more »
« less
- Award ID(s):
- 1940243
- PAR ID:
- 10357579
- Date Published:
- Journal Name:
- ArXivorg
- ISSN:
- 2331-8422
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We develop the categorical context for defining Hermitian non‐semisimple topological quantum field theories (TQFTs). We prove that relative Hermitian modular categories give rise to modified Hermitian Witten–Reshetikhin–Turaev TQFTs and provide numerous examples of these structures coming from the representation theory of quantum groups and quantum superalgebras. The Hermitian theory developed here for the modified Turaev–Viro TQFT is applied to define new pseudo‐Hermitian topological phases that can be considered as non‐semisimple analogs of Levin–Wen models.more » « less
-
Tight bosonic analogs of free-fermionic symmetry-protected topological phases, and their associated edgelocalized excitations, have long evaded the grasp of condensed-matter and AMO physics. In this paper, building on our initial exploration [Phys. Rev. Lett. 127, 245701 (2021)], we identify a broad class of quadratic bosonic systems subject to Markovian dissipation that realize tight bosonic analogs of the Majorana and Dirac edge modes characteristic of topological superconductors and insulators, respectively. To this end, we establish a general framework for topological metastability for these systems, by leveraging pseudospectral theory as the appropriate mathematical tool for capturing the nonnormality of the Lindbladian generator. The resulting dynamical paradigm, which is characterized by both a sharp separation between transient and asymptotic dynamics and a nontrivial topological invariant, is shown to host edge-localized modes, which we dub Majorana and Dirac bosons. Generically, such modes consist of one conserved mode and a canonically conjugate generator of an approximate phase-space translation symmetry of the dynamics. The general theory is exemplified through several representative models exhibiting the full range of exotic boundary physics that topologically metastable systems can engender. In particular, we explore the extent to which Noether’s theorem is violated in this dissipative setting and the way in which certain symmetries can nontrivially modify the edge modes. Notably, we also demonstrate the possibility of anomalous parity dynamics for a bosonic cat state prepared in a topologically metastable system, whereby an equal distribution between even and odd parity sectors is sustained over a long transient. For both Majorana and Dirac bosons, observable multitime signatures in the form of anomalously long-lived quantum correlations and divergent zero-frequency power spectral peaks are proposed and discussed in detail. Our results point to a paradigm for symmetry-protected topological physics in free bosons, embedded deeply in the long-lived transient regimes of metastable dynamics.more » « less
-
A bstract In this work, we use Ising chain and Kitaev chain to check the validity of an earlier proposal in arXiv:2011.02859 that enriched fusion (higher) categories provide a unified categorical description of all gapped/gapless quantum liquid phases, including symmetry-breaking phases, topological orders, SPT/SET orders and CFT-type gapless quantum phases. In particular, we show explicitly that, in each gapped phase realized by these two models, the spacetime observables form a fusion category enriched in a braided fusion category such that its monoidal center is trivial. We also study the categorical descriptions of the boundaries of these models. In the end, we obtain a classification of and the categorical descriptions of all 1-dimensional (spatial dimension) gapped quantum phases with a bosonic/fermionic finite onsite symmetry.more » « less
-
The Ginzburg-Landau (GL) theory is very successful in describing the pairing symmetry, a fundamental characterization of the broken symmetries in a paired superfluid or superconductor. However, GL theory does not describe fermionic excitations such as Bogoliubov quasiparticles or Andreev bound states that are directly related to topological properties of the superconductor. In this work, we show that the symmetries of the fermionic excitations are captured by a Projective Symmetry Group (PSG), which is a group extension of the bosonic symmetry group in the superconducting state. We further establish a correspondence between the pairing symmetry and the fermion PSG. When the normal and superconducting states share the same spin rotational symmetry, there is a simpler correspondence between the pairing symmetry and the fermion PSG, which we enumerate for all 32 crystalline point groups. We also discuss the general framework for computing PSGs when the spin rotational symmetry is spontaneously broken in the superconducting state. This PSG formalism leads to experimental consequences, and as an example, we show how a given pairing symmetry dictates the classification of topological superconductivity.more » « less
An official website of the United States government

