Abstract We present the Cardinal mock galaxy catalogs, a new version of the Buzzard simulation that has been updated to support ongoing and future cosmological surveys, including the Dark Energy Survey (DES), DESI, and LSST. These catalogs are based on a one-quarter sky simulation populated with galaxies out to a redshift ofz= 2.35 to a depth ofmr= 27. Compared to the Buzzard mocks, the Cardinal mocks include an updated subhalo abundance matching model that considers orphan galaxies and includes mass-dependent scatter between galaxy luminosity and halo properties. This model can simultaneously fit galaxy clustering and group–galaxy cross-correlations measured in three different luminosity threshold samples. The Cardinal mocks also feature a new color assignment model that can simultaneously fit color-dependent galaxy clustering in three different luminosity bins. We have developed an algorithm that uses photometric data to further improve the color assignment model and have also developed a novel method to improve small-scale lensing below the ray-tracing resolution. These improvements enable the Cardinal mocks to accurately reproduce the abundance of galaxy clusters and the properties of lens galaxies in the DES data. As such, these simulations will be a valuable tool for future cosmological analyses based on large sky surveys. 
                        more » 
                        « less   
                    
                            
                            The Galaxy–Halo Connection of DESI Luminous Red Galaxies with Subhalo Abundance Matching
                        
                    
    
            Abstract We use subhalo abundance and age distribution matching to create magnitude-limited mock galaxy catalogs atz∼ 0.43, 0.52, and 0.63 withz-band and 3.4μmW1-band absolute magnitudes andr−zandr−W1 colors. From these magnitude-limited mocks, we select mock luminous red galaxy (LRG) samples according to the (r−z)-based (optical) and (r−W1)-based (infrared) selection criteria for the LRG sample of the Dark Energy Spectroscopic Instrument (DESI) survey. Our models reproduce the number densities, luminosity functions, color distributions, and projected clustering of the DESI Legacy Surveys that are the basis for DESI LRG target selection. We predict the halo occupation statistics of both optical and IR DESI LRGs at fixed cosmology and assess the differences between the two LRG samples. We find that IR-based SHAM modeling represents the differences between the optical and IR LRG populations better than using thezband and that age distribution matching overpredicts the clustering of LRGs, implying that galaxy color is uncorrelated with halo age in the LRG regime. Both the optical and IR DESI LRG target selections exclude some of the most luminous galaxies that would appear to be LRGs based on their position on the red sequence in optical color–magnitude space. Both selections also yield populations with a nontrivial LRG–halo connection that does not reach unity for the most massive halos. We find that the IR selection achieves greater completeness (≳90%) than the optical selection across all redshift bins studied. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1950409
- PAR ID:
- 10524757
- Publisher / Repository:
- Institute of Physics
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 954
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 131
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)ABSTRACT We evaluate the impact of imaging systematics on the clustering of luminous red galaxies (LRG), emission-line galaxies (ELG), and quasars (QSO) targeted for the upcoming Dark Energy Spectroscopic Instrument (DESI) survey. Using Data Release 7 of the DECam Legacy Survey, we study the effects of astrophysical foregrounds, stellar contamination, differences between north galactic cap and south galactic cap measurements, and variations in imaging depth, stellar density, galactic extinction, seeing, airmass, sky brightness, and exposure time before presenting survey masks and weights to mitigate these effects. With our sanitized samples in hand, we conduct a preliminary analysis of the clustering amplitude and evolution of the DESI main targets. From measurements of the angular correlation functions, we determine power law fits $$r_0 = 7.78 \pm 0.26\, h^{-1}$$Mpc, γ = 1.98 ± 0.02 for LRGs and $$r_0 = 5.45 \pm 0.1\, h^{-1}$$Mpc, γ = 1.54 ± 0.01 for ELGs. Additionally, from the angular power spectra, we measure the linear biases and model the scale-dependent biases in the weakly non-linear regime. Both sets of clustering measurements show good agreement with survey requirements for LRGs and ELGs, attesting that these samples will enable DESI to achieve precise cosmological constraints. We also present clustering as a function of magnitude, use cross-correlations with external spectroscopy to infer dN/dz and measure clustering as a function of luminosity, and probe higher order clustering statistics through counts-in-cells moments.more » « less
- 
            null (Ed.)ABSTRACT Cross-correlations between the lensing of the cosmic microwave background (CMB) and other tracers of large-scale structure provide a unique way to reconstruct the growth of dark matter, break degeneracies between cosmology and galaxy physics, and test theories of modified gravity. We detect a cross-correlation between Dark Energy Spectroscopic Instrument (DESI)-like luminous red galaxies (LRGs) selected from DECam Legacy Survey imaging and CMB lensing maps reconstructed with the Planck satellite at a significance of S/N = 27.2 over scales ℓmin = 30, ℓmax = 1000. To correct for magnification bias, we determine the slope of the LRG cumulative magnitude function at the faint limit as s = 0.999 ± 0.015, and find corresponding corrections of the order of a few per cent for $$C^{\kappa g}_{\ell }, C^{gg}_{\ell }$$ across the scales of interest. We fit the large-scale galaxy bias at the effective redshift of the cross-correlation zeff ≈ 0.68 using two different bias evolution agnostic models: a HaloFit times linear bias model where the bias evolution is folded into the clustering-based estimation of the redshift kernel, and a Lagrangian perturbation theory model of the clustering evaluated at zeff. We also determine the error on the bias from uncertainty in the redshift distribution; within this error, the two methods show excellent agreement with each other and with DESI survey expectations.more » « less
- 
            Abstract Active galactic nuclei (AGN) are the signposts of black hole growth, and likely play an important role in galaxy evolution. An outstanding question is whether AGN of different spectral types indicate different evolutionary stages in the coevolution of black holes and galaxies. We present the angular correlation function between an AGN sample selected from Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) optical photometry and Wide-field Infrared Survey Explorer mid-IR photometry and a luminous red galaxy (LRG) sample from HSC-SSP. We investigate AGN clustering strength as a function of luminosity and spectral features across three independent HSC fields totaling ∼600 deg2, forz∈ 0.6 −1.2 and AGN withL6μm> 3 × 1044erg s−1. There are ∼28,500 AGN and ∼1.5 million LRGs in our primary analysis. We determine the average halo mass for the full AGN sample (Mh≈ 1012.9h−1M⊙), and note that it does not evolve significantly as a function of redshift (over this narrow range) or luminosity. We find that, on average, unobscured AGN (Mh≈ 1013.3h−1M⊙) occupy ∼4.5× more massive halos than obscured AGN (Mh≈ 1012.6h−1M⊙), at 5σstatistical significance using 1D uncertainties, and at 3σusing the full covariance matrix, suggesting a physical difference between unobscured and obscured AGN, beyond the line-of-sight viewing angle. Furthermore, we find evidence for a halo mass dependence on reddening level within the Type I AGN population, which could support the existence of a dust-obscured phase. However, we also find that quite small systematic shifts in the redshift distributions of the AGN sample could explain current and previously observed differences inMh.more » « less
- 
            ABSTRACT Luminous red galaxies, or LRGs, are representative of the most massive galaxies and were originally selected in the Sloan Digital Sky Survey as good tracers of large-scale structure. They are dominated by by uniformly old stellar populations, have low star formation rates, early type morphologies, and little cold gas. Despite having old stellar populations and little in situ star formation, studies have shown that they have grown their stellar mass since z = 1, implying that they grow predominantly via the accretion of satellites. Tests of this picture have been limited because of the lack of deep imaging data sets that both covers a large enough area of the sky to contain substantial numbers of LRGs and that also is deep enough to detect faint satellites. We use the 25 deg2 Early Data Release (EDR) of the DESI Legacy Imaging Surveys to characterize the satellite galaxy population of LRGs out to z = 0.65. The DESI Legacy Imaging Surveys are comprised of grz imaging to 2–2.5 mag deeper than SDSS and with better image quality. We use a new statistical background technique to identify excess populations of putative satellite galaxies around 1823 LRGs at 0.2 < z < 0.65. In three redshift and luminosity bins we measure the numbers of satellite galaxies and their r−z colour distribution down to rest-frame g-band luminosity limits at least 3.6 times fainter than L*. In addition, we develop a forward modeling technique and apply it to constrain the mean number of satellites in each of our redshift and luminosity bins. Finally, we use these estimates to determine the amount of stellar mass growth in LRGs down to the local Universe.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    