skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: A transition-based parser for unscoped episdoc logical form
“Episodic Logic: Unscoped Logical Form” (EL-ULF) is a semantic representation capturing predicate-argument structure as well as more challenging aspects of language within the Episodic Logic formalism. We present the first learned approach for parsing sentences into ULFs, using a growing set of annotated examples. The results provide a strong baseline for future improvement. Our method learns a sequence-to-sequence model for predicting the transition action sequence within a modified cache transition system. We evaluate the efficacy of type grammar-based constraints, a word-to-symbol lexicon, and transition system state features in this task. Our system is availableat https://github.com/genelkim/ ulf-transition-parser. We also present the first official annotated ULF dataset at https://www.cs.rochester.edu/u/ gkim21/ulf/resources/.  more » « less
Award ID(s):
1940981
PAR ID:
10299969
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Fourteenth Int. Conf. on Computational Semantics (IWCS 2021)
Page Range / eLocation ID:
184-201
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Unscoped Episodic Logical Forms (ULF) is a semantic representation for English sentences which captures semantic type structure, allows for linguistic inferences, and provides a basis for further resolution into Episodic Logic (EL). We present an application of pre-trained autoregressive language models to the task of rendering ULFs into English, and show that ULF's properties reduce the required training data volume for this approach when compared to AMR. We also show that the same system, when applied in reverse, performs well as an English-to-ULF parser. 
    more » « less
  2. Unscoped Logical Form (ULF) of Episodic Logic is a meaning representation format that captures the overall semantic type structure of natural language while leaving certain finer details, such as word sense and quantifier scope, underspecified for ease of parsing and annotation. While a learned parser exists to convert English to ULF, its performance is severely limited by the lack of a large dataset to train the system. We present a ULF dataset augmentation method that samples type-coherent ULF expressions using the ULF semantic type system and filters out samples corresponding to implausible English sentences using a pretrained language model. Our data augmentation method is configurable with parameters that trade off between plausibility of samples with sample novelty and augmentation size. We find that the best configuration of this augmentation method substantially improves parser performance beyond using the existing unaugmented dataset. 
    more » « less
  3. null (Ed.)
    We implement the formalization of natural logic-like monotonic inference using Unscoped Episodic Logical Forms (ULFs) by Kim et al. (2020). We demonstrate this system’s capacity to handle a variety of challenging semantic phenomena using the FraCaS dataset (Cooper et al., 1996).These results give empirical evidence for prior claims that ULF is an appropriate representation to mediate natural logic-like inferences. 
    more » « less
  4. null (Ed.)
    We present a method of making natural logic inferences from Unscoped Logical Form of Episodic Logic. We establish a correspondence between inference rules of scope-resolved Episodic Logic and the natural logic treatment by Sánchez Valencia (1991a), and hence demonstrate the ability to handle foundational natural logic inferences from prior literature as well as more general nested monotonicity inferences. 
    more » « less
  5. We consider the problem of establishing that a program-synthesis problem is unrealizable (i.e., has no solution in a given search space of programs). Prior work on unrealizability has developed some automatic techniques to establish that a problem is unrealizable; however, these techniques are all black-box , meaning that they conceal the reasoning behind why a synthesis problem is unrealizable. In this paper, we present a Hoare-style reasoning system, called unrealizability logic for establishing that a program-synthesis problem is unrealizable. To the best of our knowledge, unrealizability logic is the first proof system for overapproximating the execution of an infinite set of imperative programs. The logic provides a general, logical system for building checkable proofs about unrealizability. Similar to how Hoare logic distills the fundamental concepts behind algorithms and tools to prove the correctness of programs, unrealizability logic distills into a single logical system the fundamental concepts that were hidden within prior tools capable of establishing that a program-synthesis problem is unrealizable. 
    more » « less