Montague Grammar Induction
We propose a computational modeling framework for inducing combinatory categorial grammars from arbitrary behavioral data. This framework provides the analyst fine-grained control over the assumptions that the induced grammar should conform to: (i) what the primitive types are; (ii) how complex types are constructed; (iii) what set of combinators can be used to combine types; and (iv) whether (and to what) the types of some lexical items should be fixed. In a proof-of-concept experiment, we deploy our framework for use in distributional analysis. We focus on the relationship between s(emantic)-selection and c(ategory)-selection,
using as input a lexicon-scale acceptability judgment dataset focused on English verbs’ syntactic distribution (the MegaAcceptability dataset) and enforcing standard assumptions from the semantics literature on the induced grammar.
- Award ID(s):
- 1940981
- Publication Date:
- NSF-PAR ID:
- 10299985
- Journal Name:
- Proceedings from Semantics and Linguistic Theory
- Volume:
- 30
- Page Range or eLocation-ID:
- 227-251
- ISSN:
- 2163-5951
- Sponsoring Org:
- National Science Foundation
More Like this
-
The ability to provide comprehensive explanations of chosen actions is a hallmark of intelligence. Lack of this ability impedes the general acceptance of AI and robot systems in critical tasks. This paper examines what forms of explanations best foster human trust in machines and proposes a framework in which explanations are generated from both functional and mechanistic perspectives. The robot system learns from human demonstrations to open medicine bottles using (i) an embodied haptic prediction model to extract knowledge from sensory feedback, (ii) a stochastic grammar model induced to capture the compositional structure of a multistep task, and (iii) anmore »
-
We propose a computational model for inducing full-fledged combinatory categorial grammars from behavioral data. This model contrasts with prior computational models of selection in representing syntactic and semantic types as structured (rather than atomic) objects, enabling direct interpretation of the modeling results relative to standard formal frameworks. We investigate the grammar our model induces when fit to a lexicon-scale acceptability judgment dataset – Mega Acceptability – focusing in particular on the types our model assigns to clausal complements and the predicates that select them.
-
Lierler, Yuliya ; Morales, Jose F ; Dodaro, Carmine ; Dahl, Veroniica ; Gebser, Martin ; Tekle, Tuncay (Ed.)Knowledge representation and reasoning (KRR) systems represent knowledge as collections of facts and rules. Like databases, KRR systems contain information about domains of human activities like industrial enterprises, science, and business. KRRs can represent complex concepts and relations, and they can query and manipulate information in sophisticated ways. Unfortunately, the KRR technology has been hindered by the fact that specifying the requisite knowledge requires skills that most domain experts do not have, and professional knowledge engineers are hard to find. One solution could be to extract knowledge from English text, and a number of works have attempted to do somore »
-
The world outside our laboratories seldom conforms to the assumptions of our models. This is especially true for dynamics models used in control and motion planning for complex high–degree of freedom systems like deformable objects. We must develop better models, but we must also consider that, no matter how powerful our simulators or how big our datasets, our models will sometimes be wrong. What is more, estimating how wrong models are can be difficult, because methods that predict uncertainty distributions based on training data do not account for unseen scenarios. To deploy robots in unstructured environments, we must address twomore »
-
Abstract The traditional approach to obtain valid confidence intervals for non-parametric quantities is to select a smoothing parameter such that the bias of the estimator is negligible relative to its standard deviation. While this approach is apparently simple, it has two drawbacks: first, the question of optimal bandwidth selection is no longer well-defined, as it is not clear what ratio of bias to standard deviation should be considered negligible. Second, since the bandwidth choice necessarily deviates from the optimal (mean squares-minimizing) bandwidth, such a confidence interval is very inefficient. To address these issues, we construct valid confidence intervals that accountmore »