Trust has been identified as a central factor for effective human-robot teaming. Existing literature on trust modeling predominantly focuses on dyadic human-autonomy teams where one human agent interacts with one robot. There is little, if not no, research on trust modeling in teams consisting of multiple human agents and multiple robotic agents. To fill this research gap, we present the trust inference and propagation (TIP) model for trust modeling in multi-human multi-robot teams. We assert that in a multi-human multi-robot team, there exist two types of experiences that any human agent has with any robot: direct and indirect experiences. The TIP model presents a novel mathematical framework that explicitly accounts for both types of experiences. To evaluate the model, we conducted a human-subject experiment with 15 pairs of participants (N=30). Each pair performed a search and detection task with two drones. Results show that our TIP model successfully captured the underlying trust dynamics and significantly outperformed a baseline model. To the best of our knowledge, the TIP model is the first mathematical framework for computational trust modeling in multi-human multi-robot teams.
more »
« less
A tale of two explanations: Enhancing human trust by explaining robot behavior
The ability to provide comprehensive explanations of chosen actions is a hallmark of intelligence. Lack of this ability impedes the general acceptance of AI and robot systems in critical tasks. This paper examines what forms of explanations best foster human trust in machines and proposes a framework in which explanations are generated from both functional and mechanistic perspectives. The robot system learns from human demonstrations to open medicine bottles using (i) an embodied haptic prediction model to extract knowledge from sensory feedback, (ii) a stochastic grammar model induced to capture the compositional structure of a multistep task, and (iii) an improved Earley parsing algorithm to jointly leverage both the haptic and grammar models. The robot system not only shows the ability to learn from human demonstrators but also succeeds in opening new, unseen bottles. Using different forms of explanations generated by the robot system, we conducted a psychological experiment to examine what forms of explanations best foster human trust in the robot. We found that comprehensive and real-time visualizations of the robot’s internal decisions were more effective in promoting human trust than explanations based on summary text descriptions. In addition, forms of explanation that are best suited to foster trust do not necessarily correspond to the model components contributing to the best task performance. This divergence shows a need for the robotics community to integrate model components to enhance both task execution and human trust in machines.
more »
« less
- Award ID(s):
- 1655300
- PAR ID:
- 10166373
- Date Published:
- Journal Name:
- Science Robotics
- Volume:
- 4
- Issue:
- 37
- ISSN:
- 2470-9476
- Page Range / eLocation ID:
- eaay4663
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A prerequisite for social coordination is bidirectional communication between teammates, each playing two roles simultaneously: as receptive listeners and expressive speakers. For robots working with humans in complex situations with multiple goals that differ in importance, failure to fulfill the expectation of either role could undermine group performance due to misalignment of values between humans and robots. Specifically, a robot needs to serve as an effective listener to infer human users’ intents from instructions and feedback and as an expressive speaker to explain its decision processes to users. Here, we investigate how to foster effective bidirectional human-robot communications in the context of value alignment—collaborative robots and users form an aligned understanding of the importance of possible task goals. We propose an explainable artificial intelligence (XAI) system in which a group of robots predicts users’ values by taking in situ feedback into consideration while communicating their decision processes to users through explanations. To learn from human feedback, our XAI system integrates a cooperative communication model for inferring human values associated with multiple desirable goals. To be interpretable to humans, the system simulates human mental dynamics and predicts optimal explanations using graphical models. We conducted psychological experiments to examine the core components of the proposed computational framework. Our results show that real-time human-robot mutual understanding in complex cooperative tasks is achievable with a learning model based on bidirectional communication. We believe that this interaction framework can shed light on bidirectional value alignment in communicative XAI systems and, more broadly, in future human-machine teaming systems.more » « less
-
Using a dual-task paradigm, we explore how robot actions, performance, and the introduction of a secondary task influence human trust and engagement. In our study, a human supervisor simultaneously engages in a target-tracking task while supervising a mobile manipulator performing an object collection task. The robot can either autonomously collect the object or ask for human assistance. The human supervisor also has the choice to rely on or interrupt the robot. Using data from initial experiments, we model the dynamics of human trust and engagement using a linear dynamical system (LDS). Furthermore, we develop a human action model to define the probability of human reliance on the robot. Our model suggests that participants are more likely to interrupt the robot when their trust and engagement are low during high-complexity collection tasks. Using Model Predictive Control (MPC), we design an optimal assistance-seeking policy. Evaluation experiments demonstrate the superior performance of the MPC policy over the baseline policy for most participants.more » « less
-
The growing number of applications in Cyber-Physical Systems (CPS) involving different types of robots while maintaining interoperability and trust is an ongoing challenge faced by traditional centralized systems. This paper presents what is, to the best of our knowledge, the first integration of the Robotic Operating System (ROS) with the Ethereum blockchain using physical robots. We implement a specialized smart contract framework called “Swarm Contracts” that rely on blockchain technology in real-world applications for robotic agents with human interaction to perform collaborative tasks while ensuring trust by motivating the agents with incentives using a token economy with a self-governing structure. The use of open-source technologies, including robot hardware platforms such as TurtleBot3, Universal Robot arm, and ROS, enables the ability to connect a wide range of robot types to the framework we propose. Going beyond simulations, we demonstrate the robustness of the proposed system in real-world conditions with actual hardware robots.more » « less
-
Robots are increasingly being employed for diverse applications where they must work and coexist with humans. The trust in human–robot collaboration (HRC) is a critical aspect of any shared-task performance for both the human and the robot. The study of a human-trusting robot has been investigated by numerous researchers. However, a robot-trusting human, which is also a significant issue in HRC, is seldom explored in the field of robotics. Motivated by this gap, we propose a novel trust-assist framework for human–robot co-carry tasks in this study. This framework allows the robot to determine a trust level for its human co-carry partner. The calculations of this trust level are based on human motions, past interactions between the human–robot pair, and the human’s current performance in the co-carry task. The trust level between the human and the robot is evaluated dynamically throughout the collaborative task, and this allows the trust to change if the human performs false positive actions, which can help the robot avoid making unpredictable movements and causing injury to the human. Additionally, the proposed framework can enable the robot to generate and perform assisting movements to follow human-carrying motions and paces when the human is considered trustworthy in the co-carry task. The results of our experiments suggest that the robot effectively assists the human in real-world collaborative tasks through the proposed trust-assist framework.more » « less
An official website of the United States government

