skip to main content


Title: Regulatory small RNA, Qrr2 is expressed independently of sigma factor-54 and can function as the sole Qrr sRNA to control quorum sensing in Vibrio parahaemolyticus
Bacterial cells alter gene expression in response to changes in population density in a process called quorum sensing (QS). In Vibrio harveyi, LuxO, a low cell density activator of sigma factor-54 (RpoN), is required for transcription of five non-coding regulatory sRNAs, Qrr1-Qrr5, which each repress translation of the master QS regulator LuxR. Vibrio parahaemolyticus, the leading cause of bacterial seafood-borne gastroenteritis, also contains five Qrr sRNAs that control OpaR (the LuxR homolog), controlling capsule polysaccharide (CPS), motility, and metabolism. We show that in a Δ luxO deletion mutant, opaR was de-repressed and CPS and biofilm were produced. However, in a Δ rpoN mutant, opaR was repressed, no CPS was produced, and less biofilm production was observed compared to wild type. To determine why opaR was repressed, expression analysis in Δ luxO showed all five qrr genes were repressed, while in Δ rpoN the qrr2 gene was significantly de-repressed. Reporter assays and mutant analysis showed Qrr2 sRNA can act alone to control OpaR. Bioinformatics analysis identified a sigma-70 (RpoD) -35 -10 promoter overlapping the canonical sigma-54 (RpoN) -24 -12 promoter in the qrr2 regulatory region. The qrr2 sigma-70 promoter element was also present in additional Vibrio species indicating it is widespread. Mutagenesis of the sigma-70 -10 promoter site in the Δ rpoN mutant background, resulted in repression of qrr2. Analysis of qrr quadruple deletion mutants, in which only a single qrr gene is present, showed that only Qrr2 sRNA can act independently to regulate opaR . Mutant and expression data also demonstrated that RpoN and the global regulator, Fis, act additively to repress qrr2 . Our data has uncovered a new mechanism of qrr expression and shows that Qrr2 sRNA is sufficient for OpaR regulation. Importance The quorum sensing non-coding sRNAs are present in all Vibrio species but vary in number and regulatory roles among species. In the Harveyi clade, all species contain five qrr genes, and in V. harveyi these are transcribed by sigma-54 and are additive in function. In the Cholerae clade, four qrr genes are present, and in V. cholerae the qrr genes are redundant in function. In V. parahaemolyticus , qrr2 is controlled by two overlapping promoters. In an rpoN mutant, qrr2 is transcribed from a sigma-70 promoter that is present in all V. parahaemolyticus strains and in other species of the Harveyi clade suggesting a conserved mechanism of regulation. Qrr2 sRNA can function as the sole Qrr sRNA to control OpaR.  more » « less
Award ID(s):
1656688
NSF-PAR ID:
10300003
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Bacteriology
ISSN:
0021-9193
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Factor for inversion stimulation is a global regulator that is highly expressed during exponential phase growth and undetectable in stationary phase growth. Quorum sensing (QS) is a global regulatory mechanism that controls gene expression in response to changes in cell density and growth phase. In Vibrio parahaemolyticus, a marine species and a significant human pathogen, the QS regulatory sRNAs, Qrr1 to Qrr5, are expressed during exponential growth and negatively regulate the high cell density QS master regulator OpaR. OpaR is a positive regulator of capsule polysaccharide (CPS) formation, which is required for biofilm formation, and is a repressor of lateral flagella required for swarming motility. In V. parahaemolyticus, we show that Fis is a positive regulator of the qrr sRNAs expression. In an in-frame fis deletion mutant, qrr expression was repressed and opaR expression was induced. The Δfis mutant produced CPS and biofilm, but swarming motility was abolished. Also, the fis deletion mutant was more sensitive to polymyxin B. Swarming motility requires expression of both the surface sensing scrABC operon and lateral flagella laf operon. Our data showed that in the Δfis mutant both laf and scrABC genes were repressed. Fis controlled swarming motility indirectly through the QS pathway and directly through the surface sensing pathway. To determine the effects of Fis on cellular metabolism, we performed in vitro growth competition assays, and found that Δfis was outcompeted by wild type in minimal media supplemented with intestinal mucus as a sole nutrient source. The data showed that Fis positively modulated mucus components L-arabinose, D-gluconate and N-acetyl-D-glucosamine catabolism gene expression. In an in vivo colonization competition assay, Δfis was outcompeted by wild type, indicating Fis is required for fitness. Overall, these data demonstrate a global regulatory role for Fis in V. parahaemolyticus that includes QS, motility, and metabolism. 
    more » « less
  2. ABSTRACT To maintain the turgor pressure of the cell under high osmolarity, bacteria accumulate small organic compounds called compatible solutes, either through uptake or biosynthesis. Vibrio parahaemolyticus , a marine halophile and an important human and shellfish pathogen, has to adapt to abiotic stresses such as changing salinity. Vibrio parahaemolyticus contains multiple compatible solute biosynthesis and transporter systems, including the ectABC-asp_ect operon required for de novo ectoine biosynthesis. Ectoine biosynthesis genes are present in many halotolerant bacteria; however, little is known about the mechanism of regulation. We investigated the role of the quorum sensing master regulators OpaR and AphA in ect gene regulation. In an opaR deletion mutant, transcriptional reporter assays demonstrated that ect expression was induced. In an electrophoretic mobility shift assay, we showed that purified OpaR bound to the ect regulatory region indicating direct regulation by OpaR. In an aphA deletion mutant, expression of the ect genes was repressed, and purified AphA bound upstream of the ect genes. These data indicate that AphA is a direct positive regulator. CosR, a Mar-type regulator known to repress ect expression in V. cholerae , was found to repress ect expression in V. parahaemolyticus . In addition, we identified a feed-forward loop in which OpaR is a direct activator of cosR , while AphA is an indirect activator of cosR . Regulation of the ectoine biosynthesis pathway via this feed-forward loop allows for precise control of ectoine biosynthesis genes throughout the growth cycle to maximize fitness. IMPORTANCE Accumulation of compatible solutes within the cell allows bacteria to maintain intracellular turgor pressure and prevent water efflux. De novo ectoine production is widespread among bacteria, and the ect operon encoding the biosynthetic enzymes is induced by increased salinity. Here, we demonstrate that the quorum sensing regulators AphA and OpaR integrate with the osmotic stress response pathway to control transcription of ectoine biosynthesis genes in V. parahaemolyticus . We uncovered a feed-forward loop wherein quorum sensing regulators also control transcription of cosR , which encodes a negative regulator of the ect operon. Moreover, our data suggest that this mechanism may be widespread in Vibrio species. 
    more » « less
  3. Bacteria accumulate small, organic compounds, called compatible solutes, via uptake from the environment or biosynthesis from available precursors to maintain the turgor pressure of the cell in response to osmotic stress. The halophile Vibrio parahaemolyticus has biosynthesis pathways for the compatible solutes ectoine ( ectABCasp_ect ) and glycine betaine ( betIBAproXWV ), four betaine-carnitine-choline transporters ( bcct1-bcct4 ) and a second ProU transporter ( proVWX). All of these systems are osmotically inducible with the exception of bcct2. Previously, it was shown that CosR, a MarR-type regulator, was a direct repressor of ectABCasp_ect in Vibrio species. In this study, we investigated whether CosR has a broader role in the osmotic stress response. Expression analyses demonstrated that betIBAproXWV , bcct1 , bcct3 , bcct4 and proVWX are repressed in low salinity. Examination of an in-frame cosR deletion mutant showed expression of these systems is de-repressed in the mutant at low salinity compared to wild-type. DNA binding assays demonstrated that purified CosR binds directly to the regulatory region of both biosynthesis systems and four transporters. In Escherichia coli GFP reporter assays, we demonstrated that CosR directly represses transcription of betIBAproXWV , bcct3 , and proVWX . Similar to V. harveyi , we showed betIBAproXWV was directly activated by the quorum sensing LuxR homolog OpaR, suggesting a conserved mechanism of regulation among Vibrio species. Phylogenetic analysis demonstrated that CosR is ancestral to the Vibrionaceae family and bioinformatics analysis showed widespread distribution among Gamma-Proteobacteria in general. Incidentally, in Aliivibrio fischeri, A. finisterrensis, A. sifiae and A. wodanis , an unrelated MarR-type regulator named ectR was clustered with ectABC-asp , which suggests the presence of another novel ectoine biosynthesis regulator. Overall, these data show that CosR is a global regulator of osmotic stress response that is widespread among bacteria. IMPORTANCE Vibrio parahaemolyticus can accumulate compatible solutes via biosynthesis and transport, which allow the cell to survive in high salinity conditions. There is little need for compatible solutes under low salinity conditions, and biosynthesis and transporter systems need to be repressed. However, the mechanism(s) of this repression is not known. In this study, we showed that CosR played a major role in the regulation of multiple compatible solute systems. Phylogenetic analysis showed that CosR is present in all members of the Vibrionaceae family as well as numerous Gamma - Proteobacteria . Collectively, these data establish CosR as a global regulator of the osmotic stress response that is widespread in bacteria, controlling many more systems than previously demonstrated. 
    more » « less
  4. Storz, Gisela (Ed.)
    ABSTRACT Quorum sensing (QS) is a chemical communication process in which bacteria produce, release, and detect extracellular signaling molecules called autoinducers. Via combined transcriptional and posttranscriptional regulatory mechanisms, QS allows bacteria to collectively alter gene expression on a population-wide scale. Recently, the TetR family transcriptional regulator LuxT was shown to control Vibrio harveyi qrr 1, encoding the Qrr1 small RNA that functions at the core of the QS regulatory cascade. Here, we use RNA sequencing to reveal that, beyond the control of qrr 1, LuxT is a global regulator of 414 V. harveyi genes, including those involved in type III secretion, siderophore production, and aerolysin toxin biosynthesis. Importantly, LuxT directly represses swrZ , encoding a GntR family transcriptional regulator, and LuxT control of type III secretion, siderophore, and aerolysin genes occurs by two mechanisms, one that is SwrZ dependent and one that is SwrZ independent. All of these target genes specify QS-controlled behaviors that are enacted when V. harveyi is at low cell density. Thus, LuxT and SwrZ function in parallel with QS to drive particular low-cell-density behaviors. Phylogenetic analyses reveal that luxT is highly conserved among Vibrionaceae , but swrZ is less well conserved. In a test case, we find that in Aliivibrio fischeri , LuxT also represses swrZ . SwrZ is a repressor of A. fischeri siderophore production genes. Thus, LuxT repression of swrZ drives the activation of A. fischeri siderophore gene expression. Our results indicate that LuxT is a major regulator among Vibrionaceae , and in the species that also possess swrZ , LuxT functions with SwrZ to control gene expression. IMPORTANCE Bacteria precisely tune gene expression patterns to successfully react to changes that occur in the environment. Defining the mechanisms that enable bacteria to thrive in diverse and fluctuating habitats, including in host organisms, is crucial for a deep understanding of the microbial world and also for the development of effective applications to promote or combat particular bacteria. In this study, we show that a regulator called LuxT controls over 400 genes in the marine bacterium Vibrio harveyi and that LuxT is highly conserved among Vibrionaceae species, ubiquitous marine bacteria that often cause disease. We characterize the mechanisms by which LuxT controls genes involved in virulence and nutrient acquisition. We show that LuxT functions in parallel with a set of regulators of the bacterial cell-to-cell communication process called quorum sensing to promote V. harveyi behaviors at low cell density. 
    more » « less
  5. Matic, Ivan (Ed.)

    Quorum sensing (QS) is a chemical communication process that bacteria use to track population density and orchestrate collective behaviors. QS relies on the production, accumulation, and group-wide detection of extracellular signal molecules called autoinducers. Vibriophage 882 (phage VP882), a bacterial virus, encodes a homolog of theVibrioQS receptor-transcription factor, called VqmA, that monitors theVibrioQS autoinducer DPO. Phage VqmA binds DPO at high host-cell density and activates transcription of the phage geneqtip. Qtip, an antirepressor, launches the phage lysis program. Phage-encoded VqmA when bound to DPO also manipulates host QS by activating transcription of the host genevqmR. VqmR is a small RNA that controls downstream QS target genes. Here, we sequenceVibrio parahaemolyticusstrain O3:K6 882, the strain from which phage VP882 was initially isolated. The chromosomal region normally encodingvqmRandvqmAharbors a deletion encompassingvqmRand a portion of thevqmApromoter, inactivating that QS system. We discover thatV.parahaemolyticusstrain O3:K6 882 is also defective in its other QS systems, due to a mutation inluxO, encoding the central QS transcriptional regulator LuxO. Both thevqmR-vqmAandluxOmutations lockV.parahaemolyticusstrain O3:K6 882 into the low-cell density QS state. Reparation of the QS defects inV.parahaemolyticusstrain O3:K6 882 promotes activation of phage VP882 lytic gene expression and LuxO is primarily responsible for this effect. Phage VP882-infected QS-competentV.parahaemolyticusstrain O3:K6 882 cells lyse more rapidly and produce more viral particles than the QS-deficient parent strain. We propose that, inV.parahaemolyticusstrain O3:K6 882, constitutive maintenance of the low-cell density QS state suppresses the launch of the phage VP882 lytic cascade, thereby protecting the bacterial host from phage-mediated lysis.

     
    more » « less