skip to main content


Title: Different amplitudes of temperature fluctuation induce distinct transcriptomic and metabolomic responses in the dung beetle Phanaeus vindex
Most studies exploring molecular and physiological responses to temperature have focused on constant temperature treatments. To gain a better understanding of the impacts of fluctuating temperatures, we investigated impacts of increased temperature variation on Phanaeus vindex dung beetles across levels of biological organization. Specifically, we hypothesized that increased temperature variation is energetically demanding. We predicted that thermal sensitivity of metabolic rate and energetic reserves would be reduced with increasing fluctuation. To test this, we examined responses of dung beetles exposed to constant (20°C), low fluctuation (20±5°C), or high fluctuation (20±12°C) temperature treatments using respirometry, energetic reserves, and HPLC-MS-based metabolomics. We found no significant differences in metabolic rates or energetic reserves, suggesting increased fluctuations were not energetically demanding. To understand why there was no effect of increased amplitude on energetics, we assembled and annotated a de novo transcriptome, finding non-overlapping transcriptomic and metabolomic responses of beetles exposed to different fluctuations. We found that 58 metabolites increased in abundance in both fluctuation treatments, but 15 only did so in response to high amplitude fluctuations. We found 120 transcripts were significantly upregulated following acclimation to any fluctuation, but 174 were upregulated only in beetles from the high amplitude fluctuation. Several differentially expressed transcripts were associated with post-translational modifications to histones that support a more open chromatin structure. Our results demonstrate that acclimation to different temperature fluctuations is distinct and may be supported by increasing transcriptional plasticity. Our results indicate for the first time that histone modifications may underlie rapid acclimation to temperature variation.  more » « less
Award ID(s):
1930829
NSF-PAR ID:
10300040
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Experimental Biology
ISSN:
0022-0949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Adaptive thermal plasticity allows organisms to adjust their physiology to cope with fluctuating environments. However, thermal plasticity is rarely studied in response to thermal variability and is often measured in a single life stage. Plasticity in response to thermal variability likely differs from responses to constant temperatures or acute stress. In addition, life stages likely differ in their plasticity and responses in one stage may be affected by the experiences in a previous stage. Increasing the resolution with which we understand thermal plasticity in response to thermal variation across ontogeny is crucial to understanding how organisms cope with the thermal variation in their environment and to estimating the capacity of plasticity to mitigate costs of rapid environmental change. We wanted to know if life stages differ in their capacity for thermal plasticity under temperature fluctuations. We reared Onthophagus taurus dung beetles in either low or high temperature fluctuation treatments and quantified thermal plasticity of metabolism of pupae and adults. We found that adults were thermally plastic and pupae were not. Next, we wanted to know if the plasticity observed in the adult life stage was affected by the thermal conditions during development. We again used low and high temperature fluctuation treatments and reared individuals in one condition through all egg to pupal stages. At eclosion, we switched half of the individuals in each treatment to the opposite fluctuation condition and, later, measured thermal plasticity of metabolism on adults. We found that temperature conditions experienced during the adult stage, but not egg to pupal stages, affects adult thermal plasticity. However, temperature fluctuations during development affect adult body size, suggesting that some aspects of the adult phenotype are decoupled from previous life stages and others are not. Our data demonstrate that life stages mount different responses to temperature variability and uniquely contribute to the adult phenotype. These findings emphasize the need to broadly integrate the life cycle into studies of phenotypic plasticity and physiology; doing so should enhance our ability to predict organismal responses to rapid global change and inform conservation efforts. 
    more » « less
  2. Exposure to stressful low temperatures during development can result in the accumulation of deleterious physiological effects called chill injury. Metabolic imbalances, disruptions in ion homeostasis, and oxidative stress contribute to the increased mortality of chill-injured insects. Interestingly, survival can be significantly increased when chill susceptible insects are exposed to a daily warm-temperature pulse during chilling. We hypothesize that warm pulses allow for the repair of damage associated with chill-injury. Here, we describe transcriptional responses during exposure to a fluctuating thermal regime (FTR), relative to constant chilled temperatures, during pupal development in the alfalfa leafcutting bee, Megachile rotundata using a combination of RNA-seq and qPCR. Pupae were exposed to either a constant, chilled temperature of 6°C, or 6°C with a daily pulse of 20°C for seven days. RNA-seq after experimental treatment revealed differential expression of transcripts involved in construction of cell membranes, oxidation-reduction and various metabolic processes. These mechanisms provide support for shared physiological responses to chill injury across taxa. The large number of differentially expressed transcripts observed after seven days of treatment suggests that the initial divergence in expression profiles between the two treatments occurred upstream of the time point sampled. Additionally, the differential expression profiles observed in this study show little overlap with those differentially expressed during temperature stress in the diapause state of M. rotundata. While the mechanisms governing the physiological response to low-temperature stress are shared, the specific transcripts associated with the response differ between life stages. 
    more » « less
  3. Temperature profoundly impacts insect development, but plasticity of reproductive behaviours may mediate the impacts of temperature change on earlier life stages. Few studies have examined the potential for adult behavioural plasticity to buffer offspring from the warmer, more variable temperatures associated with climate change. We used a field manipulation to examine whether the dung beetle Phanaeus vindex alters breeding behaviours in response to temperature changes and whether behavioural shifts protect offspring from temperature changes. Dung beetles lay eggs inside brood balls made of dung that are buried underground. Brood ball depth impacts the temperatures offspring experience with consequences for development. We placed adult females in either control or greenhouse treatments that simultaneously increased temperature mean and variance. We found that females in greenhouse treatments produced more brood balls that were smaller and buried deeper than controls, suggesting brood ball number or burial depth may come at a cost to brood ball size, which can impact offspring nutrition. Despite being buried deeper, brood balls from the greenhouse treatment experienced warmer mean temperatures but similar amplitudes of temperature fluctuation relative to controls. Our findings suggest adult behaviours may partially buffer developing offspring from temperature changes. 
    more » « less
  4. Abstract

    The eastern oyster, Crassostrea virginica, forms reefs that provide critical services to the surrounding ecosystem. These reefs are at risk from climate change, in part because altered rainfall patterns may amplify local fluctuations in salinity, impacting oyster recruitment, survival, and growth. As in other marine organisms, warming water temperatures might interact with these changes in salinity to synergistically influence oyster physiology. In this study, we used comparative transcriptomics, measurements of physiology, and a field assessment to investigate what phenotypic changes C. virginica uses to cope with combined temperature and salinity stress in the Gulf of Mexico. Oysters from a historically low salinity site (Sister Lake, LA) were exposed to fully crossed temperature (20°C and 30°C) and salinity (25, 15, and 7 PSU) treatments. Using comparative transcriptomics on oyster gill tissue, we identified a greater number of genes that were differentially expressed (DE) in response to low salinity at warmer temperatures. Functional enrichment analysis showed low overlap between genes DE in response to thermal stress compared with hypoosmotic stress and identified enrichment for gene ontologies associated with cell adhesion, transmembrane transport, and microtubule-based process. Experiments also showed that oysters changed their physiology at elevated temperatures and lowered salinity, with significantly increased respiration rates between 20°C and 30°C. However, despite the higher energetic demands, oysters did not increase their feeding rate. To investigate transcriptional differences between populations in situ, we collected gill tissue from three locations and two time points across the Louisiana Gulf coast and used quantitative PCR to measure the expression levels of seven target genes. We found an upregulation of genes that function in osmolyte transport, oxidative stress mediation, apoptosis, and protein synthesis at our low salinity site and sampling time point. In summary, oysters altered their phenotype more in response to low salinity at higher temperatures as evidenced by a higher number of DE genes during laboratory exposure, increased respiration (higher energetic demands), and in situ differential expression by season and location. These synergistic effects of hypoosmotic stress and increased temperature suggest that climate change will exacerbate the negative effects of low salinity exposure on eastern oysters.

     
    more » « less
  5. Abstract The response of ectotherms to temperature stress is complex, non-linear, and is influenced by life stage and previous thermal exposure. Mortality is higher under constant low temperatures than under a fluctuating thermal regime (FTR) that maintains the same low temperature but adds a brief, daily pulse of increased temperature. Long term exposure to FTR has been shown to increase transcription of genes involved in oxidative stress, immune function, and metabolic pathways, which may aid in recovery from chill injury and oxidative damage. Previous research suggests the transcriptional response that protects against sub-lethal damage occurs rapidly under exposure to fluctuating temperatures. However, existing studies have only examined gene expression after a week or over many months. Here we characterize gene expression during a single temperature cycle under FTR. Development of pupating alfalfa leafcutting bees (Megachile rotundata) was interrupted at the red-eye stage and were transferred to 6°C with a 1-h pulse to 20°C and returned to 6°C. RNA was collected before, during, and after the temperature pulse and compared to pupae maintained at a static 6°C. The warm pulse is sufficient to cause expression of transcripts that repair cell membrane damage, modify membrane composition, produce antifreeze proteins, restore ion homeostasis, and respond to oxidative stress. This pattern of expression indicates that even brief exposure to warm temperatures has significant protective effects on insects exposed to stressful cold temperatures that persist beyond the warm pulse. Megachile rotundata’s sensitivity to temperature fluctuations indicates that short exposures to temperature changes affect development and physiology. Genes associated with developmental patterning are expressed after the warm pulse, suggesting that 1 h at 20°C was enough to resume development in the pupae. The greatest difference in gene expression occurred between pupae collected after the warm pulse and at constant low temperatures. Although both were collected at the same time and temperature, the transcriptional response to one FTR cycle included multiple transcripts previously identified under long-term FTR exposure associated with recovery from chill injury, indicating that the effects of FTR occur rapidly and are persistent. 
    more » « less