This research proposes a dynamic resource allocation method for vehicle-to-everything (V2X) communications in the six generation (6G) cellular networks. Cellular V2X (C-V2X) communications empower advanced applications but at the same time bring unprecedented challenges in how to fully utilize the limited physical-layer resources, given the fact that most of the applications require both ultra low latency, high data rate and high reliability. Resource allocation plays a pivotal role to satisfy such requirements as well as guarantee quality of service (QoS). Based on this observation, a novel fuzzy-logic-assisted Q learning model (FAQ) is proposed to intelligently and dynamically allocate resources by taking advantage of the centralized allocation mode. The proposed FAQ model reuses the resources to maximize the network throughput while minimizing the interference caused by concurrent transmissions. The fuzzy-logic module expedites the learning and improves the performance of the Q-learning. A mathematical model is developed to analyze the network throughput considering the interference. To evaluate the performance, a system model for V2X communications is built for urban areas, where various V2X services are deployed in the network. Simulation results show that the proposed FAQ algorithm can significantly outperform deep reinforcement learning, Q-learning and other advanced allocation strategies regarding the convergence speed and the network throughput.
more »
« less
Denial-of-Service Attacks on C-V2X Networks
Cellular Vehicle-to-Everything (C-V2X) networks are increasingly adopted by automotive original equipment manufacturers (OEMs). C-V2X, as defined in 3GPP Release 14 Mode 4, allows vehicles to self-manage the network in absence of a cellular base-station. Since C-V2X networks convey safety-critical messages, it is crucial to assess their security posture. This work contributes a novel set of Denial-of-Service (DoS) attacks on C-V2X networks operating in Mode 4. The attacks are caused by adversarial resource block selection and vary in sophistication and efficiency. In particular, we consider "oblivious" adversaries that ignore recent transmission activity on resource blocks, "smart" adversaries that do monitor activity on each resource block, and "cooperative" adversaries that work together to ensure they attack different targets. We analyze and simulate these attacks to showcase their effectiveness. Assuming a fixed number of attackers, we show that at low vehicle density, smart and cooperative attacks can significantly impact network performance, while at high vehicle density, oblivious attacks are almost as effective as the more sophisticated attacks.
more »
« less
- Award ID(s):
- 1908807
- PAR ID:
- 10300043
- Date Published:
- Journal Name:
- Third International Workshop on Automotive and Autonomous Vehicle Security (AutoSec) 2021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Martín-Sacristán, David; Garcia-Roger, David (Ed.)With the recent 5G communication technology deployment, Cellular Vehicle-to-Everything (C-V2X) significantly enhances road safety by enabling real-time exchange of critical traffic information among vehicles, pedestrians, infrastructure, and networks. However, further research is required to address real-time application latency and communication reliability challenges. This paper explores integrating cutting-edge C-V2X technology with environmental perception systems to enhance safety at intersections and crosswalks. We propose a multi-module architecture combining C-V2X with state-of-the-art perception technologies, GPS mapping methods, and the client–server module to develop a co-operative perception system for collision avoidance. The proposed system includes the following: (1) a hardware setup for C-V2X communication; (2) an advanced object detection module leveraging Deep Neural Networks (DNNs); (3) a client–server-based co-operative object detection framework to overcome computational limitations of edge computing devices; and (4) a module for mapping GPS coordinates of detected objects, enabling accurate and actionable GPS data for collision avoidance—even for detected objects not equipped with C-V2X devices. The proposed system was evaluated through real-time experiments at the GMMRC testing track at Kettering University. Results demonstrate that the proposed system enhances safety by broadcasting critical obstacle information with an average latency of 9.24 milliseconds, allowing for rapid situational awareness. Furthermore, the proposed system accurately provides GPS coordinates for detected obstacles, which is essential for effective collision avoidance. The technology integration in the proposed system offers high data rates, low latency, and reliable communication, which are key features that make it highly suitable for C-V2X-based applications.more » « less
-
Collaborative perception enables autonomous driving vehicles to share sensing or perception data via broadcast-based vehicle-to-everything (V2X) communication technologies such as Cellular-V2X (C-V2X), hoping to enable accurate perception in face of inaccurate perception results by each individual vehicle. Nevertheless, the V2X communication channel remains a significant bottleneck to the performance and usefulness of collaborative perception due to limited bandwidth and ad hoc communication scheduling. In this paper, we explore challenges and design choices for V2X-based collaborative perception, and propose an architecture that lever-ages the power of edge computing such as road-side units for central communication scheduling. Using NS-3 simulations, we show the performance gap between distributed and centralized C-V2X scheduling in terms of achievable throughput and communication efficiency, and explore scenarios where edge assistance is beneficial or even necessary for collaborative perception.more » « less
-
null (Ed.)Residential networks are difficult to secure due to resource constraints and lack of local security expertise. These networks primarily use consumer-grade routers that lack meaningful security mechanisms, providing a safe-haven for adversaries to launch attacks, including damaging distributed denial-of-service (DDoS) attacks. Prior efforts have suggested outsourcing residential network security to experts, but motivating user adoption has been a challenge. This work explores combining residential SDN techniques with prior work on collaborative DDoS reporting to identify residential network compromises. This combination provides incentives for end-users to deploy the technique, including rapid notification of compromises on their own devices and reduced upstream bandwidth consumption, while incurring minimal performance overheads.more » « less
-
There is an increase in usage of smaller cells or femtocells to improve performance and coverage of next-generation heterogeneous wireless networks (HetNets). However, the interference caused by femtocells to neighboring cells is a limiting performance factor in dense HetNets. This interference is being managed via distributed resource allocation methods. However, as the density of the network increases so does the complexity of such resource allocation methods. Yet, unplanned deployment of femtocells requires an adaptable and self-organizing algorithm to make HetNets viable. As such, we propose to use a machine learning approach based on Q-learning to solve the resource allocation problem in such complex networks. By defining each base station as an agent, a cellular network is modeled as a multi-agent network. Subsequently, cooperative Q-learning can be applied as an efficient approach to manage the resources of a multi-agent network. Furthermore, the proposed approach considers the quality of service (QoS) for each user and fairness in the network. In comparison with prior work, the proposed approach can bring more than a four-fold increase in the number of supported femtocells while using cooperative Q-learning to reduce resource allocation overhead.more » « less
An official website of the United States government

