skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Edge-Assisted Collaborative Perception in Autonomous Driving: A Reflection on Communication Design
Collaborative perception enables autonomous driving vehicles to share sensing or perception data via broadcast-based vehicle-to-everything (V2X) communication technologies such as Cellular-V2X (C-V2X), hoping to enable accurate perception in face of inaccurate perception results by each individual vehicle. Nevertheless, the V2X communication channel remains a significant bottleneck to the performance and usefulness of collaborative perception due to limited bandwidth and ad hoc communication scheduling. In this paper, we explore challenges and design choices for V2X-based collaborative perception, and propose an architecture that lever-ages the power of edge computing such as road-side units for central communication scheduling. Using NS-3 simulations, we show the performance gap between distributed and centralized C-V2X scheduling in terms of achievable throughput and communication efficiency, and explore scenarios where edge assistance is beneficial or even necessary for collaborative perception.  more » « less
Award ID(s):
2045539 2007391
PAR ID:
10328839
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM/IEEE Symposium on Edge Computing (SEC) Workshops
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Cellular Vehicle-to-Everything (C-V2X) networks are increasingly adopted by automotive original equipment manufacturers (OEMs). C-V2X, as defined in 3GPP Release 14 Mode 4, allows vehicles to self-manage the network in absence of a cellular base-station. Since C-V2X networks convey safety-critical messages, it is crucial to assess their security posture. This work contributes a novel set of Denial-of-Service (DoS) attacks on C-V2X networks operating in Mode 4. The attacks are caused by adversarial resource block selection and vary in sophistication and efficiency. In particular, we consider "oblivious" adversaries that ignore recent transmission activity on resource blocks, "smart" adversaries that do monitor activity on each resource block, and "cooperative" adversaries that work together to ensure they attack different targets. We analyze and simulate these attacks to showcase their effectiveness. Assuming a fixed number of attackers, we show that at low vehicle density, smart and cooperative attacks can significantly impact network performance, while at high vehicle density, oblivious attacks are almost as effective as the more sophisticated attacks. 
    more » « less
  2. Abstract

    Vehicle‐to‐Everything (V2X) communication has been proposed as a potential solution to improve the robustness and safety of autonomous vehicles by improving coordination and removing the barrier of non‐line‐of‐sight sensing. Cooperative Vehicle Safety (CVS) applications are tightly dependent on the reliability of the underneath data system, which can suffer from loss of information due to the inherent issues of their different components, such as sensors' failures or the poor performance of V2X technologies under dense communication channel load. Particularly, information loss affects the target classification module and, subsequently, the safety application performance. To enable reliable and robust CVS systems that mitigate the effect of information loss, a Context‐Aware Target Classification (CA‐TC) module coupled with a hybrid learning‐based predictive modeling technique for CVS systems is proposed. The CA‐TC consists of two modules: a Context‐Aware Map (CAM), and a Hybrid Gaussian Process (HGP) prediction system. Consequently, the vehicle safety applications use the information from the CA‐TC, making them more robust and reliable. The CAM leverages vehicles' path history, road geometry, tracking, and prediction; and the HGP is utilized to provide accurate vehicles' trajectory predictions to compensate for data loss (due to communication congestion) or sensor measurements' inaccuracies. Based on offline real‐world data, a finite bank of driver models that represent the joint dynamics of the vehicle and the drivers' behavior is learned. Offline training and online model updates are combined with on‐the‐fly forecasting to account for new possible driver behaviors. Finally, the framework is validated using simulation and realistic driving scenarios to confirm its potential in enhancing the robustness and reliability of CVS systems.

     
    more » « less
  3. This paper is on a pedestrian collision warning and avoidance system for road vehicles based on V2X communication. In cases where the presence and location of a pedestrian or group of pedestrians cannot be determined using line-of-sight sensors like camera, radar and lidar, signals from pedestrians' smartphone apps are used to detect and localize them relative to the road vehicle through the DSRC radio used for V2X communication. A hardware-in-the-loop setup using a validated automated driving vehicle model in the high fidelity vehicle dynamics simulation program Carsim Real Time with Sensors and Traffic is used along with two DSRC modems emulating the vehicle and pedestrian communications in the development and initial experimental testing of this method. The vehicle either stops or, if possible, goes around the pedestrians in a socially acceptable manner. The elastic band method is used to locally modify the vehicle trajectory in real time when pedestrians are detected on the nearby path of the vehicle. The effectiveness of the proposed method is demonstrated using hardware-in-the-loop simulations. 
    more » « less
  4. The advent of 5G Vehicle-to-Everything (5G-V2X) technology has revolutionized daily life and the economy. However, the complexity of testing 5G-V2X systems in lab and field settings along with the development cost is increasingly challenging. To overcome these issues, the paper proposes the use of Digital Twin technology, which offers a precise, accurate, and controllable lab-based representation of real-world test conditions. The main idea is to design an open-ended digital twin architecture specifically tailored for 5G-V2X, with the aim of fostering innovation in various aspects of autonomous driving. Considering the recent improvement in Open Radio Access Network (O-RAN) and Multi-Access Edge Computing (MEC) technologies in the proposed architecture, it not only facilitates the development and testing of diverse and sophisticated network and communication layers solutions and applications, but also provides a real-time environment to evaluate new artificial intelligence (AI) methods, data and model sharing, and progress measurement in the field of 5G-V2X. 
    more » « less
  5. Vehicle to Vehicle (V2V) communication allows vehicles to wirelessly exchange information on the surrounding environment and enables cooperative perception. It helps prevent accidents, increase the safety of the passengers, and improve the traffic flow efficiency. However, these benefits can only come when the vehicles can communicate with each other in a fast and reliable manner. Therefore, we investigated two areas to improve the communication quality of V2V: First, using beamforming to increase the bandwidth of V2V communication by establishing accurate and stable collaborative beam connection between vehicles on the road; second, ensuring scalable transmission to decrease the amount of data to be transmitted, thus reduce the bandwidth requirements needed for collaborative perception of autonomous driving vehicles. Beamforming in V2V communication can be achieved by utilizing image-based and LIDAR’s 3D data-based vehicle detection and tracking. For vehicle detection and tracking simulation, we tested the Single Shot Multibox Detector deep learning-based object detection method that can achieve a mean Average Precision of 0.837 and the Kalman filter for tracking. For scalable transmission, we simulate the effect of varying pixel resolutions as well as different image compression techniques on the file size of data. Results show that without compression, the file size for only transmitting the bounding boxes containing detected object is up to 10 times less than the original file size. Similar results are also observed when the file is compressed by lossless and lossy compression to varying degrees. Based on these findings using existing databases, the impact of these compression methods and methods of effectively combining feature maps on the performance of object detection and tracking models will be further tested in the real-world autonomous driving system. 
    more » « less