skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ps and Qs: Quantization-Aware Pruning for Efficient Low Latency Neural Network Inference
Efficient machine learning implementations optimized for inference in hardware have wide-ranging benefits, depending on the application, from lower inference latency to higher data throughput and reduced energy consumption. Two popular techniques for reducing computation in neural networks are pruning, removing insignificant synapses, and quantization, reducing the precision of the calculations. In this work, we explore the interplay between pruning and quantization during the training of neural networks for ultra low latency applications targeting high energy physics use cases. Techniques developed for this study have potential applications across many other domains. We study various configurations of pruning during quantization-aware training, which we term quantization-aware pruning , and the effect of techniques like regularization, batch normalization, and different pruning schemes on performance, computational complexity, and information content metrics. We find that quantization-aware pruning yields more computationally efficient models than either pruning or quantization alone for our task. Further, quantization-aware pruning typically performs similar to or better in terms of computational efficiency compared to other neural architecture search techniques like Bayesian optimization. Surprisingly, while networks with different training configurations can have similar performance for the benchmark application, the information content in the network can vary significantly, affecting its generalizability.  more » « less
Award ID(s):
1904444
PAR ID:
10300106
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Artificial Intelligence
Volume:
4
ISSN:
2624-8212
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High-quality 3D image recognition is an important component of many vision and robotics systems. However, the accurate processing of these images requires the use of compute-expensive 3D Convolutional Neural Networks (CNNs). To address this challenge, we propose the use of Spiking Neural Networks (SNNs) that are generated from iso-architecture CNNs and trained with quantization-aware gradient descent to optimize their weights, membrane leak, and firing thresholds. During both training and inference, the analog pixel values of a 3D image are directly applied to the input layer of the SNN without the need to convert to a spike-train. This significantly reduces the training and inference latency and results in high degree of activation sparsity, which yields significant improvements in computational efficiency. However, this introduces energy-hungry digital multiplications in the first layer of our models, which we propose to mitigate using a processing-in-memory (PIM) architecture. To evaluate our proposal, we propose a 3D and a 3D/2D hybrid SNN-compatible convolutional architecture and choose hyperspectral imaging (HSI) as an application for 3D image recognition. We achieve overall test accuracy of 98.68, 99.50, and 97.95% with 5 time steps (inference latency) and 6-bit weight quantization on the Indian Pines, Pavia University, and Salinas Scene datasets, respectively. In particular, our models implemented using standard digital hardware achieved accuracies similar to state-of-the-art (SOTA) with ~560.6× and ~44.8× less average energy than an iso-architecture full-precision and 6-bit quantized CNN, respectively. Adopting the PIM architecture in the first layer, further improves the average energy, delay, and energy-delay-product (EDP) by 30, 7, and 38%, respectively. 
    more » « less
  2. Ever-growing edge applications often require short processing latency and high energy efficiency to meet strict timing and power budget. In this work, we propose that the compact long short-term memory (LSTM) model can approximate conventional acausal algorithms with reduced latency and improved efficiency for real-time causal prediction, especially for the neural signal processing in closed-loop feedback applications. We design an LSTM inference accelerator by taking advantage of the fine-grained parallelism and pipelined feedforward and recurrent updates. We also propose a bit-sparse quantization method that can reduce the circuit area and power consumption by replacing the multipliers with the bit-shift operators. We explore different combinations of pruning and quantization methods for energy-efficient LSTM inference on datasets collected from the electroencephalogram (EEG) and calcium image processing applications. Evaluation results show that our proposed LSTM inference accelerator can achieve 1.19 GOPS/mW energy efficiency. The LSTM accelerator with 2-sbit/16-bit sparse quantization and 60% sparsity can reduce the circuit area and power consumption by 54.1% and 56.3%, respectively, compared with a 16-bit baseline implementation. 
    more » « less
  3. Deep Neural Networks (DNNs) have shown significant advantages in a wide variety of domains. However, DNNs are becoming computationally intensive and energy hungry at an exponential pace, while at the same time, there is a vast demand for running sophisticated DNN-based services on resource constrained embedded devices. In this paper, we target energy-efficient inference on embedded DNN accelerators. To that end, we propose an automated framework to compress DNNs in a hardware-aware manner by jointly employing pruning and quantization. We explore, for the first time, per-layer fine- and coarse-grained pruning, in the same DNN architecture, in addition to low bit-width mixed-precision quantization for weights and activations. Reinforcement Learning (RL) is used to explore the associated design space and identify the pruning-quantization configuration so that the energy consumption is minimized whilst the prediction accuracy loss is retained at acceptable levels. Using our novel composite RL agent we are able to extract energy-efficient solutions without requiring retraining and/or fine-tuning. Our extensive experimental evaluation over widely used DNNs and the CIFAR-10/100 and ImageNet datasets demonstrates that our framework achieves 39% average energy reduction for 1.7% average accuracy loss and outperforms significantly the state-of-the-art approaches. 
    more » « less
  4. Recurrent Neural Networks (RNNs) are becoming increasingly important for time series-related applications which require efficient and real-time implementations. The two major types are Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks. It is a challenging task to have real-time, efficient, and accurate hardware RNN implementations because of the high sensitivity to imprecision accumulation and the requirement of special activation function implementations. Recently two works have focused on FPGA implementation of inference phase of LSTM RNNs with model compression. First, ESE uses a weight pruning based compressed RNN model but suffers from irregular network structure after pruning. The second work C-LSTM mitigates the irregular network limitation by incorporating block-circulant matrices for weight matrix representation in RNNs, thereby achieving simultaneous model compression and acceleration. A key limitation of the prior works is the lack of a systematic design optimization framework of RNN model and hardware implementations, especially when the block size (or compression ratio) should be jointly optimized with RNN type, layer size, etc. In this paper, we adopt the block-circulant matrixbased framework, and present the Efficient RNN (E-RNN) framework for FPGA implementations of the Automatic Speech Recognition (ASR) application. The overall goal is to improve performance/energy efficiency under accuracy requirement. We use the alternating direction method of multipliers (ADMM) technique for more accurate block-circulant training, and present two design explorations providing guidance on block size and reducing RNN training trials. Based on the two observations, we decompose E-RNN in two phases: Phase I on determining RNN model to reduce computation and storage subject to accuracy requirement, and Phase II on hardware implementations given RNN model, including processing element design/optimization, quantization, activation implementation, etc. 1 Experimental results on actual FPGA deployments show that E-RNN achieves a maximum energy efficiency improvement of 37.4× compared with ESE, and more than 2× compared with C-LSTM, under the same accuracy. 
    more » « less
  5. Graph Neural Networks (GNNs) have achieved remarkable accuracy in cognitive tasks such as predictive analytics on graph-structured data. Hence, they have become very popular in diverse real-world applications. However, GNN training with large real-world graph datasets in edge-computing scenarios is both memory- and compute-intensive. Traditional computing platforms such as CPUs and GPUs do not provide the energy efficiency and low latency required in edge intelligence applications due to their limited memory bandwidth. Resistive random-access memory (ReRAM)-based processing-in-memory (PIM) architectures have been proposed as suitable candidates for accelerating AI applications at the edge, including GNN training. However, ReRAM-based PIM architectures suffer from low reliability due to their limited endurance, and low performance when they are used for GNN training in real-world scenarios with large graphs. In this work, we propose a learning-for-data-pruning framework, which leverages a trained Binary Graph Classifier (BGC) to reduce the size of the input data graph by pruning subgraphs early in the training process to accelerate the GNN training process on ReRAM-based architectures. The proposed light-weight BGC model reduces the amount of redundant information in input graph(s) to speed up the overall training process, improves the reliability of the ReRAM-based PIM accelerator, and reduces the overall training cost. This enables fast, energy-efficient, and reliable GNN training on ReRAM-based architectures. Our experimental results demonstrate that using this learning for data pruning framework, we can accelerate GNN training and improve the reliability of ReRAM-based PIM architectures by up to 1.6×, and reduce the overall training cost by 100× compared to state-of-the-art data pruning techniques. 
    more » « less