skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Predicting circadian phase across populations: a comparison of mathematical models and wearable devices
Abstract From smart work scheduling to optimal drug timing, there is enormous potential in translating circadian rhythms research results for precision medicine in the real world. However, the pursuit of such effort requires the ability to accurately estimate circadian phase outside of the laboratory. One approach is to predict circadian phase noninvasively using light and activity measurements and mathematical models of the human circadian clock. Most mathematical models take light as an input and predict the effect of light on the human circadian system. However, consumer-grade wearables that are already owned by millions of individuals record activity instead of light, which prompts an evaluation of the accuracy of predicting circadian phase using motion alone. Here, we evaluate the ability of four different models of the human circadian clock to estimate circadian phase from data acquired by wrist-worn wearable devices. Multiple datasets across populations with varying degrees of circadian disruption were used for generalizability. Though the models we test yield similar predictions, analysis of data from 27 shift workers with high levels of circadian disruption shows that activity, which is recorded in almost every wearable device, is better at predicting circadian phase than measured light levels from wrist-worn devices when processed by mathematical models. In those living under normal living conditions, circadian phase can typically be predicted to within 1 h, even with data from a widely available commercial device (the Apple Watch). These results show that circadian phase can be predicted using existing data passively collected by millions of individuals with comparable accuracy to much more invasive and expensive methods.  more » « less
Award ID(s):
1714094
PAR ID:
10300246
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Sleep
Volume:
44
Issue:
10
ISSN:
0161-8105
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Study ObjectivesExamine the ability of a physiologically based mathematical model of human circadian rhythms to predict circadian phase, as measured by salivary dim light melatonin onset (DLMO), in children compared to other proxy measurements of circadian phase (bedtime, sleep midpoint, and wake time). MethodsAs part of an ongoing clinical trial, a sample of 29 elementary school children (mean age: 7.4 ± .97 years) completed 7 days of wrist actigraphy before a lab visit to assess DLMO. Hourly salivary melatonin samples were collected under dim light conditions (<5 lx). Data from actigraphy were used to generate predictions of circadian phase using both a physiologically based circadian limit cycle oscillator mathematical model (Hannay model), and published regression equations that utilize average sleep onset, midpoint, and offset to predict DLMO. Agreement of proxy predictions with measured DLMO were assessed and compared. ResultsDLMO predictions using the Hannay model outperformed DLMO predictions based on children’s sleep/wake parameters with a Lin’s Concordance Correlation Coefficient (LinCCC) of 0.79 compared to 0.41–0.59 for sleep/wake parameters. The mean absolute error was 31 min for the Hannay model compared to 35–38 min for the sleep/wake variables. ConclusionOur findings suggest that sleep/wake behaviors were weak proxies of DLMO phase in children, but mathematical models using data collected from wearable data can be used to improve the accuracy of those predictions. Additional research is needed to better adapt these adult models for use in children. Clinical TrialThe i Heart Rhythm Project: Healthy Sleep and Behavioral Rhythms for Obesity Prevention https://clinicaltrials.gov/ct2/show/NCT04445740. 
    more » « less
  2. In early childhood, consolidation of sleep from a biphasic to a monophasic sleep-wake pattern, that is, the transition from sleeping during an afternoon nap and at night to sleeping only during the night, represents a major developmental milestone. Reduced napping behavior is associated with an advance in the timing of the circadian system; however, it is unknown if this advance represents a standard response of the circadian clock to altered patterns of light exposure or if it additionally reflects features of the developing circadian system. Using a mathematical model of the human circadian pacemaker, we investigated the impact of napping and non-napping patterns of light exposure on entrained circadian phases. Simulated light schedules were based on published data from 20 children (34.2 ± 2.0 months) with habitual napping or non-napping sleep patterns (15 nappers). We found the model predicted different circadian phases for napping and non-napping light patterns: both the decrease in afternoon light during the nap and the increase in evening light associated with napping toddlers’ later bedtimes contributed to the observed circadian phase difference produced between napping and non-napping light schedules. We systematically quantified the effects on phase shifting of nap duration, timing, and light intensity, finding larger phase delays occurred for longer and earlier naps. In addition, we simulated phase response curves to a 1-h light pulse and 1-h dark pulse to predict phase and intensity dependence of these changes in light exposure. We found the light pulse produced larger shifts compared with the dark pulse, and we analyzed the model dynamics to identify the features contributing to this asymmetry. These findings suggest that napping status affects circadian timing due to altered patterns of light exposure, with the dynamics of the circadian clock and light processing mediating the effects of the dark pulse associated with a daytime nap. 
    more » « less
  3. Monitoring human gait is essential to quantify gait issues associated with fall-prone individuals as well as other gait-related movement disorders. Being portable and cost-effective, ambulatory gait analysis using inertial sensors is considered a promising alternative to traditional laboratory-based approach. The current study aimed to provide a method for predicting the spatio-temporal gait parameters using the wrist-worn inertial sensors. Eight young adults were involved in a laboratory study. Optical motion analysis system and force-plates were used for the assessment of baseline gait parameters. Spatio-temporal features of an Inertial Measurement Unit (IMU) on the wrist were analyzed. Multi-variate correlation analyses were performed to develop gait parameter prediction models. The results indicated that gait stride time was strongly correlated with peak-to-peak duration of wrist gyroscope signal in the anterio-posterior direction. Meanwhile, gait stride length was successfully predicted using a combination model of peak resultant wrist acceleration and peak sagittal wrist angle. In conclusion, current study provided the evidence that the wrist-worn inertial sensors are capable of estimating spatio-temporal gait parameters. This finding paves the foundation for developing a wrist-worn gait monitor with high user compliance. 
    more » « less
  4. Abstract ObjectiveThe factors that influence seizure timing are poorly understood, and seizure unpredictability remains a major cause of disability. Work in chronobiology has shown that cyclical physiological phenomena are ubiquitous, with daily and multiday cycles evident in immune, endocrine, metabolic, neurological, and cardiovascular function. Additionally, work with chronic brain recordings has identified that seizure risk is linked to daily and multiday cycles in brain activity. Here, we provide the first characterization of the relationships between the cyclical modulation of a diverse set of physiological signals, brain activity, and seizure timing. MethodsIn this cohort study, 14 subjects underwent chronic ambulatory monitoring with a multimodal wrist‐worn sensor (recording heart rate, accelerometry, electrodermal activity, and temperature) and an implanted responsive neurostimulation system (recording interictal epileptiform abnormalities and electrographic seizures). Wavelet and filter–Hilbert spectral analyses characterized circadian and multiday cycles in brain and wearable recordings. Circular statistics assessed electrographic seizure timing and cycles in physiology. ResultsTen subjects met inclusion criteria. The mean recording duration was 232 days. Seven subjects had reliable electroencephalographic seizure detections (mean = 76 seizures). Multiday cycles were present in all wearable device signals across all subjects. Seizure timing was phase locked to multiday cycles in five (temperature), four (heart rate, phasic electrodermal activity), and three (accelerometry, heart rate variability, tonic electrodermal activity) subjects. Notably, after regression of behavioral covariates from heart rate, six of seven subjects had seizure phase locking to the residual heart rate signal. SignificanceSeizure timing is associated with daily and multiday cycles in multiple physiological processes. Chronic multimodal wearable device recordings can situate rare paroxysmal events, like seizures, within a broader chronobiology context of the individual. Wearable devices may advance the understanding of factors that influence seizure risk and enable personalized time‐varying approaches to epilepsy care. 
    more » « less
  5. Abstract Wearable recordings of neurophysiological signals captured from the wrist offer enormous potential for seizure monitoring. Yet, data quality remains one of the most challenging factors that impact data reliability. We suggest a combined data quality assessment tool for the evaluation of multimodal wearable data. We analyzed data from patients with epilepsy from four epilepsy centers. Patients wore wristbands recording accelerometry, electrodermal activity, blood volume pulse, and skin temperature. We calculated data completeness and assessed the time the device was worn (on-body), and modality-specific signal quality scores. We included 37,166 h from 632 patients in the inpatient and 90,776 h from 39 patients in the outpatient setting. All modalities were affected by artifacts. Data loss was higher when using data streaming (up to 49% among inpatient cohorts, averaged across respective recordings) as compared to onboard device recording and storage (up to 9%). On-body scores, estimating the percentage of time a device was worn on the body, were consistently high across cohorts (more than 80%). Signal quality of some modalities, based on established indices, was higher at night than during the day. A uniformly reported data quality and multimodal signal quality index is feasible, makes study results more comparable, and contributes to the development of devices and evaluation routines necessary for seizure monitoring. 
    more » « less