skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data quality evaluation in wearable monitoring
Abstract Wearable recordings of neurophysiological signals captured from the wrist offer enormous potential for seizure monitoring. Yet, data quality remains one of the most challenging factors that impact data reliability. We suggest a combined data quality assessment tool for the evaluation of multimodal wearable data. We analyzed data from patients with epilepsy from four epilepsy centers. Patients wore wristbands recording accelerometry, electrodermal activity, blood volume pulse, and skin temperature. We calculated data completeness and assessed the time the device was worn (on-body), and modality-specific signal quality scores. We included 37,166 h from 632 patients in the inpatient and 90,776 h from 39 patients in the outpatient setting. All modalities were affected by artifacts. Data loss was higher when using data streaming (up to 49% among inpatient cohorts, averaged across respective recordings) as compared to onboard device recording and storage (up to 9%). On-body scores, estimating the percentage of time a device was worn on the body, were consistently high across cohorts (more than 80%). Signal quality of some modalities, based on established indices, was higher at night than during the day. A uniformly reported data quality and multimodal signal quality index is feasible, makes study results more comparable, and contributes to the development of devices and evaluation routines necessary for seizure monitoring.  more » « less
Award ID(s):
2138378
PAR ID:
10480301
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract ObjectiveThe factors that influence seizure timing are poorly understood, and seizure unpredictability remains a major cause of disability. Work in chronobiology has shown that cyclical physiological phenomena are ubiquitous, with daily and multiday cycles evident in immune, endocrine, metabolic, neurological, and cardiovascular function. Additionally, work with chronic brain recordings has identified that seizure risk is linked to daily and multiday cycles in brain activity. Here, we provide the first characterization of the relationships between the cyclical modulation of a diverse set of physiological signals, brain activity, and seizure timing. MethodsIn this cohort study, 14 subjects underwent chronic ambulatory monitoring with a multimodal wrist‐worn sensor (recording heart rate, accelerometry, electrodermal activity, and temperature) and an implanted responsive neurostimulation system (recording interictal epileptiform abnormalities and electrographic seizures). Wavelet and filter–Hilbert spectral analyses characterized circadian and multiday cycles in brain and wearable recordings. Circular statistics assessed electrographic seizure timing and cycles in physiology. ResultsTen subjects met inclusion criteria. The mean recording duration was 232 days. Seven subjects had reliable electroencephalographic seizure detections (mean = 76 seizures). Multiday cycles were present in all wearable device signals across all subjects. Seizure timing was phase locked to multiday cycles in five (temperature), four (heart rate, phasic electrodermal activity), and three (accelerometry, heart rate variability, tonic electrodermal activity) subjects. Notably, after regression of behavioral covariates from heart rate, six of seven subjects had seizure phase locking to the residual heart rate signal. SignificanceSeizure timing is associated with daily and multiday cycles in multiple physiological processes. Chronic multimodal wearable device recordings can situate rare paroxysmal events, like seizures, within a broader chronobiology context of the individual. Wearable devices may advance the understanding of factors that influence seizure risk and enable personalized time‐varying approaches to epilepsy care. 
    more » « less
  2. Abstract ObjectiveSeizure unpredictability can be debilitating and dangerous for people with epilepsy. Accurate seizure forecasters could improve quality of life for those with epilepsy but must be practical for long‐term use. This study presents the first validation of a seizure‐forecasting system using ultra‐long‐term, non‐invasive wearable data. MethodsEleven participants with epilepsy were recruited for continuous monitoring, capturing heart rate and step count via wrist‐worn devices and seizures via electroencephalography (average recording duration of 337 days). Two hybrid models—combining machine learning and cycle‐based methods—were proposed to forecast seizures at both short (minutes) and long (up to 44 days) horizons. ResultsThe Seizure Warning System (SWS), designed for forecasting near‐term seizures, and the Seizure Risk System (SRS), designed for forecasting long‐term risk, both outperformed traditional models. In addition, the SRS reduced high‐risk time by 29% while increasing sensitivity by 11%. SignificanceThese improvements mark a significant advancement in making seizure forecasting more practical and effective. 
    more » « less
  3. Epilepsy is one of the most common neurological diseases globally (around 50M people globally). Fortunately, up to 70% of people with epilepsy could live seizure-free if properly diagnosed and treated, and a reliable technique to monitor the onset of seizures could improve the quality of life of patients who are constantly facing the fear of random seizure attacks. The current gold standard, video-EEG (v-EEG), involves attaching over 20 electrodes to the scalp, is costly, requires hospitalization, trained professionals, and is uncomfortable for patients. To address this gap, we developedEarSD, a lightweight and unobtrusive ear-worn system to detect seizure onsets by measuring physiological signals behind the ears. This system can be integrated into earphones, headphones, or hearing aids, providing a convenient solution for continuous monitoring.EarSDis an integrated custom-builtsensing-computing-communicationear-worn platform to capture seizure signals, remove the noises caused by motion artifacts and environmental impacts, and stream the collected data wirelessly to the computer/mobile phone nearby.EarSD’s ML algorithm, running on a server, identifies seizure-associated signatures and detects onset events. We evaluated the proposed system in both in-lab and in-hospital experiments at the University of Texas Southwestern Medical Center with epileptic seizure patients, confirming its usability and practicality. 
    more » « less
  4. Brain functional network connectivity is an important measure for characterizing changes in a variety of neurological disorders, for example Alzheimer’s Disease, Parkinson Disease, and Epilepsy. Epilepsy is a serious neurological disorder affecting more than 50 million persons worldwide with severe impact on the quality of life of patients and their family members due to recurrent seizures. More than 30% of epilepsy patients are refractive to pharmacotherapy and are considered for resection to disrupt epilepsy seizure networks. However, 20-50% of these patients continue to have seizures after surgery. Therefore, there is a critical need to gain new insights into the characteristics of epilepsy seizure networks involving one of more brain regions and accurately delineate epileptogenic zone as a target for surgery. Although there is growing availability of large volume of high resolution stereotactic electroencephalogram (SEEG) data recorded from intracranial electrodes during presurgical evaluation of patients, there are significant informatics challenges associated with processing and analyzing this large signal dataset for characterizing epilepsy seizure networks. In this paper, we describe the development and application of a high-performance indexing structure for efficient retrieval of large-scale SEEG signal data to compute seizure network patterns corresponding to brain functional connectivity networks. This novel Neuro-Integrative Connectivity (NIC) search and retrieval method has been developed by extending the red-black tree index model together with an efficient lookup algorithm. We systematically perform a comparative evaluation of the proposed NIC index using de-identified SEEG data from a patient with temporal lobe epilepsy to retrieve segments of signal data corresponding to multiple seizure events and demonstrate the significant advantages of the NIC index as compared to existing methods. This new NIC Index enables faster computation of brain functional connectivity measures in epilepsy patients for large-scale network analysis and potentially provide new insights into the organization as well as evolution of seizure networks in epilepsy patients. 
    more » « less
  5. Epilepsy is one of the most common neurological diseases globally, affecting around 50 million people worldwide. Fortunately, up to 70 percent of people with epilepsy could live seizure-free if properly diagnosed and treated, and a reliable technique to monitor the onset of seizures could improve the quality of life of patients who are constantly facing the fear of random seizure attacks. The scalp-based EEG test, despite being the gold standard for diagnosing epilepsy, is costly, necessitates hospitalization, demands skilled professionals for operation, and is discomforting for users. In this paper, we propose EarSD, a novel lightweight, unobtrusive, and socially acceptable ear-worn system to detect epileptic seizure onsets by measuring the physiological signals from behind the user's ears. EarSD includes an integrated custom-built sensing, computing, and communication PCB to collect and amplify the signals of interest, remove the noises caused by motion artifacts and environmental impacts, and stream the data wirelessly to the computer or mobile phone nearby, where data are uploaded to the host computer for further processing. We conducted both in-lab and in-hospital experiments with epileptic seizure patients who were hospitalized for seizure studies. The preliminary results confirm that EarSD can detect seizures with up to 95.3 percent accuracy by just using classical machine learning algorithms. 
    more » « less