We give a proof of the slope classicality theorem in classical and higher Coleman theory for modular curves of arbitrary level using the completed cohomology classes attached to overconvergent modular forms. The latter give an embedding of the quotient of overconvergent modular forms by classical modular forms, which is the obstruction space for classicality in either cohomological degree, into a unitary representation of GL 2 ( ℚ p ) . The U p operator becomes a double coset, and unitarity yields slope vanishing. 
                        more » 
                        « less   
                    
                            
                            Overconvergent modular forms are highest-weight vectors in the Hodge-Tate weight zero part of completed cohomology
                        
                    
    
            Abstract We construct a $$(\mathfrak {gl}_2, B(\mathbb {Q}_p))$$ and Hecke-equivariant cup product pairing between overconvergent modular forms and the local cohomology at $$0$$ of a sheaf on $$\mathbb {P}^1$$ , landing in the compactly supported completed $$\mathbb {C}_p$$ -cohomology of the modular curve. The local cohomology group is a highest-weight Verma module, and the cup product is non-trivial on a highest-weight vector for any overconvergent modular form of infinitesimal weight not equal to $$1$$ . For classical weight $$k\geq 2$$ , the Verma has an algebraic quotient $$H^1(\mathbb {P}^1, \mathcal {O}(-k))$$ , and on classical forms, the pairing factors through this quotient, giving a geometric description of ‘half’ of the locally algebraic vectors in completed cohomology; the other half is described by a pairing with the roles of $H^1$ and $H^0$ reversed between the modular curve and $$\mathbb {P}^1$$ . Under minor assumptions, we deduce a conjecture of Gouvea on the Hodge-Tate-Sen weights of Galois representations attached to overconvergent modular forms. Our main results are essentially a strict subset of those obtained independently by Lue Pan, but the perspective here is different, and the proofs are short and use simple tools: a Mayer-Vietoris cover, a cup product, and a boundary map in group cohomology. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1704005
- PAR ID:
- 10300248
- Date Published:
- Journal Name:
- Forum of Mathematics, Sigma
- Volume:
- 9
- ISSN:
- 2050-5094
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We construct a monomorphism of the De Rham complex of scalar multivalued meromorphic forms on the projective line, holomorphic on the complement to a finite set of points, to the chain complex of the Lie algebra of sl_2-valued algebraic functions on the same complement with coefficients in a tensor product of contragradient Verma modules over the affine Lie algebra \hat{sl}_2. We show that the existence of singular vectors in the Verma modules (the Malikov-Feigin-Fuchs singular vectors) is reflected in the new relations between the cohomology classes of logarithmic differential forms.more » « less
- 
            In this paper we compute cup products of elements of the first étale cohomology group of μℓ over a smooth projective geometrically irreducible curve C over a finite field k when ℓ is a prime and #k≡1 mod ℓ. Over the algebraic closure of k, such products are values of the Weil pairing on the ℓ-torsion of the Jacobian of C. Over k, such cup products are more subtle due to the fact that they naturally take values in Pic(C)⊗Zμ~ℓ rather than in the group μ~ℓ of ℓth roots of unity in k∗.more » « less
- 
            We consider two complexes. The first complex is the twisted de Rham complex of scalar meromorphic differential forms on projective line, holomorphic on the complement to a finite set of points. The second complex is the chain complex of the Lie algebra of sl2-valued algebraic functions on the same complement, with coefficients in a tensor product of contragradient Verma modules over the affine Lie algebra sl2^. In [Schechtman V., Varchenko A., Mosc. Math. J. 17 (2017), 787-802] a construction of a monomorphism of the first complex to the second was suggested and it was indicated that under this monomorphism the existence of singular vectors in the Verma modules (the Malikov-Feigin-Fuchs singular vectors) is reflected in the relations between the cohomology classes of the de Rham complex. In this paper we prove these results. △ Lessmore » « less
- 
            null (Ed.)Following a suggestion of Peter Scholze, we construct an action of G m ^ \widehat {\mathbb {G}_m} on the Katz moduli problem, a profinite-étale cover of the ordinary locus of the p p -adic modular curve whose ring of functions is Serre’s space of p p -adic modular functions. This action is a local, p p -adic analog of a global, archimedean action of the circle group S 1 S^1 on the lattice-unstable locus of the modular curve over C \mathbb {C} . To construct the G m ^ \widehat {\mathbb {G}_m} -action, we descend a moduli-theoretic action of a larger group on the (big) ordinary Igusa variety of Caraiani-Scholze. We compute the action explicitly on local expansions and find it is given by a simple multiplication of the cuspidal and Serre-Tate coordinates q q ; along the way we also prove a natural generalization of Dwork’s equation τ = log  q \tau =\log q for extensions of Q p / Z p \mathbb {Q}_p/\mathbb {Z}_p by μ p ∞ \mu _{p^\infty } valid over a non-Artinian base. Finally, we give a direct argument (without appealing to local expansions) to show that the action of G m ^ \widehat {\mathbb {G}_m} integrates the differential operator θ \theta coming from the Gauss-Manin connection and unit root splitting, and explain an application to Eisenstein measures and p p -adic L L -functions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    