Abstract We study the cone of moving divisors on the moduli space $${\mathcal{A}}_{g}$$ of principally polarized abelian varieties. Partly motivated by the generalized Rankin–Cohen bracket, we construct a non-linear holomorphic differential operator that sends Siegel modular forms to Siegel modular forms, and we apply it to produce new modular forms. Our construction recovers the known divisors of minimal moving slope on $${\mathcal{A}}_{g}$$ for $$g\leq 4$$, and gives an explicit upper bound for the moving slope of $${\mathcal{A}}_{5}$$ and a conjectural upper bound for the moving slope of $${\mathcal{A}}_{6}$$.
more »
« less
Slope classicality in higher Coleman theory via highest weight vectors in completed cohomology
We give a proof of the slope classicality theorem in classical and higher Coleman theory for modular curves of arbitrary level using the completed cohomology classes attached to overconvergent modular forms. The latter give an embedding of the quotient of overconvergent modular forms by classical modular forms, which is the obstruction space for classicality in either cohomological degree, into a unitary representation of GL 2 ( ℚ p ) . The U p operator becomes a double coset, and unitarity yields slope vanishing.
more »
« less
- Award ID(s):
- 2201112
- PAR ID:
- 10410545
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 45
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract We construct a $$(\mathfrak {gl}_2, B(\mathbb {Q}_p))$$ and Hecke-equivariant cup product pairing between overconvergent modular forms and the local cohomology at $$0$$ of a sheaf on $$\mathbb {P}^1$$ , landing in the compactly supported completed $$\mathbb {C}_p$$ -cohomology of the modular curve. The local cohomology group is a highest-weight Verma module, and the cup product is non-trivial on a highest-weight vector for any overconvergent modular form of infinitesimal weight not equal to $$1$$ . For classical weight $$k\geq 2$$ , the Verma has an algebraic quotient $$H^1(\mathbb {P}^1, \mathcal {O}(-k))$$ , and on classical forms, the pairing factors through this quotient, giving a geometric description of ‘half’ of the locally algebraic vectors in completed cohomology; the other half is described by a pairing with the roles of $H^1$ and $H^0$ reversed between the modular curve and $$\mathbb {P}^1$$ . Under minor assumptions, we deduce a conjecture of Gouvea on the Hodge-Tate-Sen weights of Galois representations attached to overconvergent modular forms. Our main results are essentially a strict subset of those obtained independently by Lue Pan, but the perspective here is different, and the proofs are short and use simple tools: a Mayer-Vietoris cover, a cup product, and a boundary map in group cohomology.more » « less
-
Bellaïche has recently applied Pink-Lie theory to prove that, under mild conditions, the image of a continuous 2-dimensional pseudorepresentation ρ of a profinite group on a local pro- p domain A contains a nontrivial congruence subgroup of SL2(B) for a certain subring B of A. We enlarge Bellaïche’s ring and give this new B a conceptual interpretation both in terms of conjugate self-twists of ρ, symmetries that constrain its image, and in terms of the adjoint trace ring of ρ, which we show is both more natural and the optimal ring for these questions in general. Finally, we use our purely algebraic result to recover and extend a variety of arithmetic big-image results for GL2-Galois representations arising from elliptic, Hilbert, and Bianchi modular forms and p-adic Hida or Coleman families of elliptic and Hilbert modular forms.more » « less
-
Abstract We consider spaces of modular forms attached to definite orthogonal groups of low even rank and nontrivial level, equipped with Hecke operators defined by Kneser neighbours. After reviewing algorithms to compute with these spaces, we investigate endoscopy using theta series and a theorem of Rallis. Along the way, we exhibit many examples and pose several conjectures. As a first application, we express counts of Kneser neighbours in terms of coefficients of classical or Siegel modular forms, complementing work of Chenevier–Lannes. As a second application, we prove new instances of Eisenstein congruences of Ramanujan and Kurokawa–Mizumoto type.more » « less
An official website of the United States government

