skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi-scale transects of three North American drylines
North American drylines are distinct air mass boundaries that have often been examined for their relation to the initiation of severe convective storms. Three cases of drylines occurring in synoptically quiescent environments are analyzed using data obtained from a single mobile platform in concert with data from operational synoptic and mesoscale observing systems. Very distinct moisture contrasts were noted in a nocturnal April case in mountainous terrain in the Trans-Pecos region of West Texas. The other two cases revealed multi-step moisture transitions within synoptically diffuse moisture gradients. Their evolution over time suggests that such multi-step patterns may be associated with diurnal and geographic forcing transitions, as well as positioning of deep moist convection.  more » « less
Award ID(s):
1644888
PAR ID:
10300264
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Atmosphere
Volume:
11
Issue:
8
ISSN:
2073-4433
Page Range / eLocation ID:
854
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Noise in Holocene paleoclimate reconstructions can hamper the detection of centennial to millennial climate variations and diagnoses of the dynamics involved. This paper uses multiple ensembles of reconstructions to separate signal and noise and determine what, if any, centennial to millennial variations influenced North America during the past 7000 years. To do so, ensembles of temperature and moisture reconstructions were compared across four different spatial scales: multi-continent, regional, sub-regional, and local. At each scale, two independent multi-record ensembles were compared to detect any centennial to millennial departures from the long Holocene trends, which correlate more than expected from random patterns. In all cases, the potential centennial to millennial variations had small magnitudes. However, at least two patterns of centennial to millennial variability appear evident. First, large-scale variations included a prominent Mid-Holocene anomaly from 5600–5000 yr BP that increased mean effective moisture and produced temperature anomalies of different signs in different regions. The changes shifted the north–south temperature gradient in mid-latitude North America with a pattern similar to that of the North Atlantic Oscillation (NAO). Second, correlated multi-century (∼ 350 years) variations produce a distinct spectral signature in temperature and hydroclimate records along the western Atlantic margin. Both patterns differ from random variations, but they express distinct spatiotemporal characteristics consistent with separate controlling dynamics. 
    more » « less
  2. null (Ed.)
    Abstract In the context of forecasting societally impactful Great Plains low-level jets (GPLLJs), the potential added value of satellite soil moisture (SM) data assimilation (DA) is high. GPLLJs are both sensitive to regional soil moisture gradients and frequent drivers of severe weather, including mesoscale convective systems. An untested hypothesis is that SM DA is more effective in forecasts of weakly synoptically forced, or uncoupled GPLLJs, than in forecasts of cyclone-induced coupled GPLLJs. Using the NASA Unified Weather Research and Forecasting (NU-WRF) Model, 75 GPLLJs are simulated at 9-km resolution both with and without NASA Soil Moisture Active Passive SM DA. Differences in modeled SM, surface sensible (SH) and latent heat (LH) fluxes, 2-m temperature (T2), 2-m humidity (Q2), PBL height (PBLH), and 850-hPa wind speed (W850) are quantified for individual jets and jet-type event subsets over the south-central Great Plains, as well as separately for each GPLLJ sector (entrance, core, and exit). At the GPLLJ core, DA-related changes of up to 5.4 kg m −2 in SM can result in T2, Q2, LH, SH, PBLH, and W850 differences of 0.68°C, 0.71 g kg −2 , 59.9 W m −2 , 52.4 W m −2 , 240 m, and 4 m s −1 , respectively. W850 differences focus along the jet axis and tend to increase from south to north. Jet-type differences are most evident at the GPLLJ exit where DA increases and decreases W850 in uncoupled and coupled GPLLJs, respectively. Data assimilation marginally reduces negative wind speed bias for all jets, but the correction is greater for uncoupled GPLLJs, as hypothesized. 
    more » « less
  3. Research in different agricultural sectors, including in crop loss estimation during flood and yield estimation, substantially rely on inundation information. Spaceborne remote sensing has widely been used in the mapping and monitoring of floods. However, the inability of optical remote sensing to cloud penetration and the scarcity of fine temporal resolution SAR data hinder the application of flood mapping in many cases. Soil Moisture Active Passive (SMAP) level 4 products, which are model-driven soil moisture data derived from SMAP observations and are available at 3-h intervals, can offer an intermediate but effective solution. This study maps flood progress in croplands by incorporating SMAP surface soil moisture, soil physical properties, and national floodplain information. Soil moisture above the effective soil porosity is a direct indication of soil saturation. Soil moisture also increases considerably during a flood event. Therefore, this approach took into account three conditions to map the flooded pixels: a minimum of 0.05 m3m−3 increment in soil moisture from pre-flood to post-flood condition, soil moisture above the effective soil porosity, and the holding of saturation condition for the 72 consecutive hours. Results indicated that the SMAP-derived maps were able to successfully map most of the flooded areas in the reference maps in the majority of the cases, though with some degree of overestimation (due to the coarse spatial resolution of SMAP). Finally, the inundated croplands are extracted from saturated areas by Spatial Hazard Zone areas (SHFA) of Federal Emergency Management Agency (FEMA) and cropland data layer (CDL). The flood maps extracted from SMAP data are validated with FEMA-declared affected counties as well as with flood maps from other sources. 
    more » « less
  4. In situ sensors that collect high-frequency data are used increasingly to monitor aquatic environments. These sensors are prone to technical errors, resulting in unrecorded observations and/or anomalous values that are subsequently removed and create gaps in time series data. We present a framework based on generalized additive and auto-regressive models to recover these missing data. To mimic sporadically missing (i) single observations and (ii) periods of contiguous observations, we randomly removed (i) point data and (ii) day- and week-long sequences of data from a two-year time series of nitrate concentration data collected from Arikaree River, USA, where synoptically collected water temperature, turbidity, conductance, elevation, and dissolved oxygen data were available. In 72% of cases with missing point data, predicted values were within the sensor precision interval of the original value, although predictive ability declined when sequences of missing data occurred. Precision also depended on the availability of other water quality covariates. When covariates were available, even a sudden, event-based peak in nitrate concentration was reconstructed well. By providing a promising method for accurate prediction of missing data, the utility and confidence in summary statistics and statistical trends will increase, thereby assisting the effective monitoring and management of fresh waters and other at-risk ecosystems. 
    more » « less
  5. Messinger, David W.; Velez-Reyes, Miguel (Ed.)
    Recently, multispectral and hyperspectral data fusion models based on deep learning have been proposed to generate images with a high spatial and spectral resolution. The general objective is to obtain images that improve spatial resolution while preserving high spectral content. In this work, two deep learning data fusion techniques are characterized in terms of classification accuracy. These methods fuse a high spatial resolution multispectral image with a lower spatial resolution hyperspectral image to generate a high spatial-spectral hyperspectral image. The first model is based on a multi-scale long short-term memory (LSTM) network. The LSTM approach performs the fusion using a multiple step process that transitions from low to high spatial resolution using an intermediate step capable of reducing spatial information loss while preserving spectral content. The second fusion model is based on a convolutional neural network (CNN) data fusion approach. We present fused images using four multi-source datasets with different spatial and spectral resolutions. Both models provide fused images with increased spatial resolution from 8m to 1m. The obtained fused images using the two models are evaluated in terms of classification accuracy on several classifiers: Minimum Distance, Support Vector Machines, Class-Dependent Sparse Representation and CNN classification. The classification results show better performance in both overall and average accuracy for the images generated with the multi-scale LSTM fusion over the CNN fusion 
    more » « less