skip to main content


Title: Entity Retrieval Using Fine-Grained Entity Aspects
Using entity aspect links, we improve upon the current state-of-the-art in entity retrieval. Entity retrieval is the task of retrieving relevant entities for search queries, such as "Antibiotic Use In Livestock". Entity aspect linking is a new technique to refine the semantic information of entity links. For example, while passages relevant to the query above may mention the entity "USA", there are many aspects of the USA of which only few, such as "USA/Agriculture", are relevant for this query. By using entity aspect links that indicate which aspect of an entity is being referred to in the context of the query, we obtain more specific relevance indicators for entities. We show that our approach improves upon all baseline methods, including the current state-of-the-art using a standard entity retrieval test collection. With this work, we release a large collection of entity-aspect-links for a large TREC corpus.  more » « less
Award ID(s):
1846017
NSF-PAR ID:
10300273
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR)
Page Range / eLocation ID:
1662 to 1666
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A prevalent approach of entity-oriented systems involves retrieving relevant entities by harnessing knowledge graph embeddings. These embeddings encode entity information in the context of the knowledge graph and are static in nature. Our goal is to generate entity embeddings that capture what renders them relevant for the query. This differs from entity embeddings constructed with static resource, for example, E-BERT. Previously, ~\citet{dalton2014entity} demonstrated the benefits obtained with the Entity Context Model, a pseudo-relevance feedback approach based on entity links in relevant contexts. In this work, we reinvent the Entity Context Model (ECM) for neural graph networks and incorporate pre-trained embeddings. We introduce three entity ranking models based on fundamental principles of ECM: (1) \acl{GAN}, (2) Simple Graph Relevance Networks, and (3) Graph Relevance Networks. \acl{GAN} and Graph Relevance Networks are the graph neural variants of ECM, that employ attention mechanism and relevance information of the relevant context respectively to ascertain entity relevance. Our experiments demonstrate that our neural variants of the ECM model significantly outperform the state-of-the-art BERT-ER ~\cite{10.1145/3477495.3531944} by more than 14\% and exceeds the performance of systems that use knowledge graph embeddings by over 101\%. Notably, our findings reveal that leveraging the relevance of the relevant context is more effective at identifying relevant entities than the attention mechanism. To evaluate the efficacy of the models, we conduct experiments on two standard benchmark datasets, DBpediaV2 and TREC Complex Answer Retrieval. To aid reproducibility, our code and data are available. https://github.com/TREMA-UNH/neural-entity-context-models 
    more » « less
  2. Hauff, Claudia Curry (Ed.)
    Given a text with entity links, the task of entity aspect linking is to identify which aspect of an entity is referred to in the context. For example, if a text passage mentions the entity "USA'', is USA mentioned in the context of the 2008 financial crisis, American cuisine, or else? Complementing efforts of Nanni et al (2018), we provide a large-scale test collection which is derived from Wikipedia hyperlinks in a dump from 01/01/2020. Furthermore, we offer strong baselines with results and broken-out feature sets to stimulate more research in this area. Data, code, feature sets, runfiles and results are released under a CC-SA license and offered on our aspect linking resource web page http://www.cs.unh.edu.unh.idm.oclc.org/~dietz/eal-dataset-2020/ 
    more » « less
  3. null (Ed.)
    The number of published manufacturing science digital articles available from scientifc journals and the broader web have exponentially increased every year since the 1990s. To assimilate all of this knowledge by a novice engineer or an experienced researcher, requires signifcant synthesis of the existing knowledge space contained within published material, to fnd answers to basic and complex queries. Algorithmic approaches through machine learning and specifcally Natural Language Processing (NLP) on a domain specifc area such as manufacturing, is lacking. One of the signifcant challenges to analyzing manufacturing vocabulary is the lack of a named entity recognition model that enables algorithms to classify the manufacturing corpus of words under various manufacturing semantic categories. This work presents a supervised machine learning approach to categorize unstructured text from 500K+manufacturing science related scientifc abstracts and labelling them under various manufacturing topic categories. A neural network model using a bidirectional long-short term memory, plus a conditional random feld (BiLSTM+CRF) is trained to extract information from manufacturing science abstracts. Our classifer achieves an overall accuracy (f1-score) of 88%, which is quite near to the state-of-the-art performance. Two use case examples are presented that demonstrate the value of the developed NER model as a Technical Language Processing (TLP) workfow on manufacturing science documents. The long term goal is to extract valuable knowledge regarding the connections and relationships between key manufacturing concepts/entities available within millions of manufacturing documents into a structured labeled-property graph data structure that allow for programmatic query and retrieval. 
    more » « less
  4. We address the problem of entity extraction with a very few examples and address it with an information retrieval approach. Existing extraction approaches consider millions of features extracted from a large number of training data cases. Generally, these data cases are generated by a distant supervision approach with entities in a knowledge base. After that a model is learned and entities are extracted. However, with extremely limited data a ranked list of relevant entities can be helpful to obtain user feedback to get more training data. As Information Retrieval (IR) is a natural choice for ranked list generation, we explore its effectiveness in such a limited data case. To this end, we propose SearchIE, a hybrid of IR and NLP approach that indexes documents represented using handcrafted NLP features. At query time SearchIE samples terms from a Logistic Regression model trained with extremely limited data. We show that SearchIE supersedes state-of-the-art NLP models to find civilians killed by US police officers with even a single civilian name as example. 
    more » « less
  5. Abstract

    Natural language processing (NLP) techniques can enhance our ability to interpret plant science literature. Many state-of-the-art algorithms for NLP tasks require high-quality labelled data in the target domain, in which entities like genes and proteins, as well as the relationships between entities, are labelled according to a set of annotation guidelines. While there exist such datasets for other domains, these resources need development in the plant sciences. Here, we present the Plant ScIenCe KnowLedgE Graph (PICKLE) corpus, a collection of 250 plant science abstracts annotated with entities and relations, along with its annotation guidelines. The annotation guidelines were refined by iterative rounds of overlapping annotations, in which inter-annotator agreement was leveraged to improve the guidelines. To demonstrate PICKLE’s utility, we evaluated the performance of pretrained models from other domains and trained a new, PICKLE-based model for entity and relation extraction (RE). The PICKLE-trained models exhibit the second-highest in-domain entity performance of all models evaluated, as well as a RE performance that is on par with other models. Additionally, we found that computer science-domain models outperformed models trained on a biomedical corpus (GENIA) in entity extraction, which was unexpected given the intuition that biomedical literature is more similar to PICKLE than computer science. Upon further exploration, we established that the inclusion of new types on which the models were not trained substantially impacts performance. The PICKLE corpus is, therefore, an important contribution to training resources for entity and RE in the plant sciences.

     
    more » « less