Knowledge Graph embeddings model semantic and struc- tural knowledge of entities in the context of the Knowledge Graph. A nascent research direction has been to study the utilization of such graph embeddings for the IR-centric task of entity ranking. In this work, we replicate the GEEER study of Gerritse et al. [9] which demonstrated improvements of Wiki2Vec embeddings on entity ranking tasks on the DBpediaV2 dataset. We further extend the study by exploring additional state-of-the-art entity embeddings ERNIE [27] and E-BERT [19], and by including another test collection, TREC CAR, with queries not about person, location, and organization entities. We confirm the finding that entity embeddings are beneficial for the entity ranking task. Interestingly, we find that Wiki2Vec is competitive with ERNIE and E-BERT. Our code and data to aid reproducibility and further research is available at https://github.com/poojahoza/E3R-Replicability
more »
« less
Neural Entity Context Models
A prevalent approach of entity-oriented systems involves retrieving relevant entities by harnessing knowledge graph embeddings. These embeddings encode entity information in the context of the knowledge graph and are static in nature. Our goal is to generate entity embeddings that capture what renders them relevant for the query. This differs from entity embeddings constructed with static resource, for example, E-BERT. Previously, ~\citet{dalton2014entity} demonstrated the benefits obtained with the Entity Context Model, a pseudo-relevance feedback approach based on entity links in relevant contexts. In this work, we reinvent the Entity Context Model (ECM) for neural graph networks and incorporate pre-trained embeddings. We introduce three entity ranking models based on fundamental principles of ECM: (1) \acl{GAN}, (2) Simple Graph Relevance Networks, and (3) Graph Relevance Networks. \acl{GAN} and Graph Relevance Networks are the graph neural variants of ECM, that employ attention mechanism and relevance information of the relevant context respectively to ascertain entity relevance. Our experiments demonstrate that our neural variants of the ECM model significantly outperform the state-of-the-art BERT-ER ~\cite{10.1145/3477495.3531944} by more than 14\% and exceeds the performance of systems that use knowledge graph embeddings by over 101\%. Notably, our findings reveal that leveraging the relevance of the relevant context is more effective at identifying relevant entities than the attention mechanism. To evaluate the efficacy of the models, we conduct experiments on two standard benchmark datasets, DBpediaV2 and TREC Complex Answer Retrieval. To aid reproducibility, our code and data are available. https://github.com/TREMA-UNH/neural-entity-context-models
more »
« less
- Award ID(s):
- 1846017
- PAR ID:
- 10473615
- Publisher / Repository:
- ACM
- Date Published:
- Format(s):
- Medium: X
- Location:
- Tokyo, Japan
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We introduce delft, a factoid question answering system which combines the nuance and depth of knowledge graph question answering approaches with the broader coverage of free-text. delft builds a free-text knowledge graph from Wikipedia, with entities as nodes and sentences in which entities co-occur as edges. For each question, delft finds the subgraph linking question entity nodes to candidates using text sentences as edges, creating a dense and high coverage semantic graph. A novel graph neural network reasons over the free-text graph—combining evidence on the nodes via information along edge sentences—to select a final answer. Experiments on three question answering datasets show delft can answer entity-rich questions better than machine reading based models, bert-based answer ranking and memory networks. delft’s advantage comes from both the high coverage of its free-text knowledge graph—more than double that of dbpedia relations—and the novel graph neural network which reasons on the rich but noisy free-text evidence.more » « less
-
Contextual word representations, typically trained on unstructured, unlabeled text, do not contain any explicit grounding to real world entities and are often unable to remember facts about those entities. We propose a general method to embed multiple knowledge bases (KBs) into large scale models, and thereby enhance their representations with structured, human-curated knowledge. For each KB, we first use an integrated entity linker to retrieve relevant entity embeddings, then update contextual word representations via a form of word-to-entity attention. In contrast to previous approaches, the entity linkers and self-supervised language modeling objective are jointly trained end-to-end in a multitask setting that combines a small amount of entity linking supervision with a large amount of raw text. After integrating WordNet and a subset of Wikipedia into BERT, the knowledge enhanced BERT (KnowBert) demonstrates improved perplexity, ability to recall facts as measured in a probing task and downstream performance on relationship extraction, entity typing, and word sense disambiguation. KnowBert’s runtime is comparable to BERT’s and it scales to large KBs.more » « less
-
null (Ed.)Entity set expansion (ESE) refers to mining ``siblings'' of some user-provided seed entities from unstructured data. It has drawn increasing attention in the IR and NLP communities for its various applications. To the best of our knowledge, there has not been any work towards a supervised neural model for entity set expansion from unstructured data. We suspect that the main reason is the lack of massive annotated entity sets. In order to solve this problem, we propose and implement a toolkit called {DBpedia-Sets}, which automatically extracts entity sets from any plain text collection and can provide a large number of distant supervision data for neural model training. We propose a two-channel neural re-ranking model {NESE} that jointly learns exact and semantic matching of entity contexts. The former accepts entity-context co-occurrence information and the latter learns a non-linear transformer from generally pre-trained embeddings to ESE-task specific embeddings for entities. Experiments on real datasets of different scales from different domains show that {NESE} outperforms state-of-the-art approaches in terms of precision and MAP, where the improvements are statistically significant and are higher when the given corpus is larger.more » « less
-
For decades, research in natural language processing (NLP) has focused on summarization. Sequence-to-sequence models for abstractive summarization have been studied extensively, yet generated summaries commonly suffer from fabricated content, and are often found to be near-extractive. We argue that, to address these issues, summarizers need to acquire the co-references that form multiple types of relations over input sentences, e.g., 1-to-N, N-to-1, and N-to-N relations, since the structured knowledge for text usually appears on these relations. By allowing the decoder to pay different attention to the input sentences for the same entity at different generation states, the structured graph representations generate more informative summaries. In this paper, we propose a hierarchical graph attention networks (HGATs) for abstractive summarization with a topicsensitive PageRank augmented graph. Specifically, we utilize dual decoders, a sequential sentence decoder, and a graph-structured decoder (which are built hierarchically) to maintain the global context and local characteristics of entities, complementing each other. We further design a greedy heuristic to extract salient users’ comments while avoiding redundancy to drive a model to better capture entity interactions. Our experimental results show that our models produce significantly higher ROUGE scores than variants without graph-based attention on both SSECIF and CNN/Daily Mail (CNN/DM) datasets.more » « less