skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Entity Embeddings for Entity Ranking: A Replicability Study
Knowledge Graph embeddings model semantic and struc- tural knowledge of entities in the context of the Knowledge Graph. A nascent research direction has been to study the utilization of such graph embeddings for the IR-centric task of entity ranking. In this work, we replicate the GEEER study of Gerritse et al. [9] which demonstrated improvements of Wiki2Vec embeddings on entity ranking tasks on the DBpediaV2 dataset. We further extend the study by exploring additional state-of-the-art entity embeddings ERNIE [27] and E-BERT [19], and by including another test collection, TREC CAR, with queries not about person, location, and organization entities. We confirm the finding that entity embeddings are beneficial for the entity ranking task. Interestingly, we find that Wiki2Vec is competitive with ERNIE and E-BERT. Our code and data to aid reproducibility and further research is available at https://github.com/poojahoza/E3R-Replicability  more » « less
Award ID(s):
1846017
PAR ID:
10473541
Author(s) / Creator(s):
;
Publisher / Repository:
Springer
Date Published:
Page Range / eLocation ID:
117-131;
Subject(s) / Keyword(s):
Entity Retrieval Entity Embeddings Knowledge Graphs
Format(s):
Medium: X
Location:
Dublin, Ireland
Sponsoring Org:
National Science Foundation
More Like this
  1. A prevalent approach of entity-oriented systems involves retrieving relevant entities by harnessing knowledge graph embeddings. These embeddings encode entity information in the context of the knowledge graph and are static in nature. Our goal is to generate entity embeddings that capture what renders them relevant for the query. This differs from entity embeddings constructed with static resource, for example, E-BERT. Previously, ~\citet{dalton2014entity} demonstrated the benefits obtained with the Entity Context Model, a pseudo-relevance feedback approach based on entity links in relevant contexts. In this work, we reinvent the Entity Context Model (ECM) for neural graph networks and incorporate pre-trained embeddings. We introduce three entity ranking models based on fundamental principles of ECM: (1) \acl{GAN}, (2) Simple Graph Relevance Networks, and (3) Graph Relevance Networks. \acl{GAN} and Graph Relevance Networks are the graph neural variants of ECM, that employ attention mechanism and relevance information of the relevant context respectively to ascertain entity relevance. Our experiments demonstrate that our neural variants of the ECM model significantly outperform the state-of-the-art BERT-ER ~\cite{10.1145/3477495.3531944} by more than 14\% and exceeds the performance of systems that use knowledge graph embeddings by over 101\%. Notably, our findings reveal that leveraging the relevance of the relevant context is more effective at identifying relevant entities than the attention mechanism. To evaluate the efficacy of the models, we conduct experiments on two standard benchmark datasets, DBpediaV2 and TREC Complex Answer Retrieval. To aid reproducibility, our code and data are available. https://github.com/TREMA-UNH/neural-entity-context-models 
    more » « less
  2. null (Ed.)
    This paper studies a new problem setting of entity alignment for knowledge graphs (KGs). Since KGs possess different sets of entities, there could be entities that cannot find alignment across them, leading to the problem of dangling entities. As the first attempt to this problem, we construct a new dataset and design a multi-task learning framework for both entity alignment and dangling entity detection. The framework can opt to abstain from predicting alignment for the detected dangling entities. We propose three techniques for dangling entity detection that are based on the distribution of nearest-neighbor distances, i.e., nearest neighbor classification, marginal ranking and background ranking. After detecting and removing dangling entities, an incorporated entity alignment model in our framework can provide more robust alignment for remaining entities. Comprehensive experiments and analyses demonstrate the effectiveness of our framework. We further discover that the dangling entity detection module can, in turn, improve alignment learning and the final performance. The contributed resource is publicly available to foster further research. 
    more » « less
  3. null (Ed.)
    In standard methodology for natural language processing, entities in text are typically embedded in dense vector spaces with pre-trained models. The embeddings produced this way are effective when fed into downstream models, but they require end-task fine-tuning and are fundamentally difficult to interpret. In this paper, we present an approach to creating entity representations that are human readable and achieve high performance on entity-related tasks out of the box. Our representations are vectors whose values correspond to posterior probabilities over fine-grained entity types, indicating the confidence of a typing model’s decision that the entity belongs to the corresponding type. We obtain these representations using a fine-grained entity typing model, trained either on supervised ultra-fine entity typing data (Choi et al., 2018) or distantly-supervised examples from Wikipedia. On entity probing tasks involving recognizing entity identity, our embeddings used in parameter-free downstream models achieve competitive performance with ELMo- and BERT-based embeddings in trained models. We also show that it is possible to reduce the size of our type set in a learning-based way for particular domains. Finally, we show that these embeddings can be post-hoc modified through a small number of rules to incorporate domain knowledge and improve performance. 
    more » « less
  4. Stance detection is typically framed as predicting the sentiment in a given text towards a target entity. However, this setup overlooks the importance of the source entity, i.e., who is expressing the opinion. In this paper, we emphasize the imperative need for studying interactions among entities when inferring stances. We first introduce a new task, entity-to-entity (E2E) stance detection, which primes models to identify entities in their canonical names and discern stances jointly. To support this study, we curate a new dataset with 10,641 annotations labeled at the sentence level from news articles of different ideological leanings. We present a novel generative framework to allow the generation of canonical names for entities as well as stances among them. We further enhance the model with a graph encoder to summarize entity activities and external knowledge surrounding the entities. Experiments show that our model outperforms strong comparisons by large margins. Further analyses demonstrate the usefulness of E2E stance detection for understanding media quotation and stance landscape as well as inferring entity ideology. 
    more » « less
  5. Scene understanding is a key technical challenge within the autonomous driving domain. It requires a deep semantic understanding of the entities and relations found within complex physical and social environments that is both accurate and complete. In practice, this can be accomplished by representing entities in a scene and their relations as a knowledge graph (KG). This scene knowledge graph may then be utilized for the task of entity prediction, leading to improved scene understanding. In this paper, we will define and formalize this problem as Knowledge-based Entity Prediction (KEP). KEP aims to improve scene understanding by predicting potentially unrecognized entities by leveraging heterogeneous, high-level semantic knowledge of driving scenes. An innovative neuro-symbolic solution for KEP is presented, based on knowledge-infused learning, which 1) introduces a dataset agnostic ontology to describe driving scenes, 2) uses an expressive, holistic representation of scenes with knowledge graphs, and 3) proposes an effective, non-standard mapping of the KEP problem to the problem of link prediction (LP) using knowledge-graph embeddings (KGE). Using real, complex and high-quality data from urban driving scenes, we demonstrate its effectiveness by showing that the missing entities may be predicted with high precision (0.87 Hits@1) while significantly outperforming the non-semantic/rule-based baselines. 
    more » « less