The PM4Silt plasticity model for representing low-plasticity silts and clays in geotechnical earthquake engineering applications is presented herein. The PM4Silt model builds on the framework of the stress-ratio controlled, critical state compatible, bounding surface plasticity PM4Sand model (version 3) described in Boulanger and Ziotopoulou (2015) and Ziotopoulou and Boulanger (2016). Modifications to the model were developed and implemented to improve its ability to approximate undrained monotonic and cyclic loading responses of low-plasticity silts and clays, as opposed to those for purely nonplastic silts or sands. Emphasis was given to obtaining reasonable approximations of undrained monotonic shear strengths, undrained cyclic shearmore »
This content will become publicly available on May 1, 2023
In-situ and Laboratory Cyclic Response of an Alluvial Plastic Silt Deposit
Current best practices for the assessment of the cyclic response of plastic silts are centered on the careful sampling and cyclic testing of natural, intact specimens. Side-by-side evaluation of in-situ and laboratory element test responses are severely limited, despite the need to establish similarities and differences in their characteristics. In this paper, a coordinated laboratory and field-testing campaign that was undertaken to compare the strain-controlled cyclic response of a plastic silt deposit at the Port of Longview, Longview, WA is described. Following a discussion of the subsurface conditions at one of several test panels, the responses of laboratory test specimens to resonant column and cyclic torsional shear testing, and constant-volume, strain-controlled cyclic direct simple shear testing are described in terms of shear modulus nonlinearity and degradation, and excess pore pressure generation with shear strain. Several months earlier, the in-situ cyclic response of the same deposit was investigated by applying a range of shear strain amplitudes using a large mobile shaker. The in-situ response is presented and compared to the laboratory test results, highlighting similarities and differences arising from differences in mechanical (e.g., constant-volume shearing; strain rate-effects) and hydraulic (e.g., local drainage) boundary conditions and the spatial variability of natural soil more »
- Award ID(s):
- 1663654
- Publication Date:
- NSF-PAR ID:
- 10300368
- Journal Name:
- Proceedings of the 20th International Conference on Soil Mechanics and Geotechnical Engineering, Sydney 2021
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This study presents the use of controlled blasting as a source of seismic energy to obtain the coupled, dynamic, linear-elastic to nonlinear-inelastic response of a plastic silt deposit. Characterization of blast-induced ground motions indicate that the shear strain and corresponding residual excess pore pressures (EPPs) are associated with low frequency near- and far-field shear waves that are within the range of earthquake frequencies, whereas the effect of high frequency P-waves are negligible. Three blasting programs were used to develop the initial and pre-strained relationships between shear strain, EPP, and nonlinear shear modulus degradation. The initial threshold shear strain to initiatemore »
-
Undrained or constant volume direct simple shear (CDSS) tests are commonly used to evaluate the liquefaction triggering characteristics of cohesionless soils. However, while the American Society for Testing of Materials (ASTM) has developed standards for monotonic direct simple shear testing, they have not developed a standard for CDSS. As a result, herein the authors review their test database and assign “grades” A-D to different aspects of the tests, e.g.: accumulated shear strain and imposed shear stress on the specimen during the consoli-dation phase, and maximum axial strain that occurs during the cyclic phase of constant volume CDSS testing. Additional gradesmore »
-
This paper presents a summary of the element test simulations (calibration simulations) submitted by 11 numerical simulation (prediction) teams that participated in the LEAP-2017 prediction exercise. A significant number of monotonic and cyclic triaxial (Vasko, An investigation into the behavior of Ottawa sand through monotonic and cyclic shear tests. Masters Thesis, The George Washington University, 2015; Vasko et al., LEAP-GWU-2015 Laboratory Tests. DesignSafe-CI, Dataset, 2018; El Ghoraiby et al., LEAP 2017: Soil characterization and element tests for Ottawa F65 sand. The George Washington University, Washington, DC, 2017; El Ghoraiby et al., LEAP-2017 GWU Laboratory Tests. DesignSafe-CI, Dataset, 2018; El Ghoraibymore »
-
The reliance on sand-based methods for the characterization and design of gravelly soils is necessitated in part by a limited understanding of how to account for the effects of particle size and distribution. In this paper, particle size effects on the strength and fabric of cohesionless, granular media are investigated using the discrete element method by testing specimens with particle size distributions (PSDs) of differing coefficient of uniformity (CU) and mean grain size (d50). Preliminary results show that when all particle shape characteristics are equal, increasing d50 yields equivalent stress-strain responses for the same relative density (DR) and CU. However,more »