Network representations of socio-physical systems are ubiquitous, examples being social (media) networks and infrastructure networks like power transmission andwater systems. The many software tools that analyze and visualize networks, and carry out simulations on them, require different graph formats. Consequently, it is important to develop software for converting graphs that are represented in a given source format into a required representation in a destination format. For network-based computations, graph conversion is a key capability that facilitates interoperability among software tools. This paper describes such a system called GraphTrans to convert graphs among different formats. This system is part of amore »
Interactive Demonstrations and Hands-On Use of thenet.science Cyberinfrastructure for Network Science Chairs’ Welcome and Tutorial Summary
Networks are readily identifiable in many aspects of society: cellular telephone networks and social networks are two common examples. Networks are studied within many academic disciplines. Consequently, a large body of (open-source) software is being produced to perform computations on networks. A cyberinfrastructure for network science, called net.science, is being built to provide a computational platform and resource for both producers and consumers of networks and software tools. This tutorial is a hands-on demonstration of some of net.science’s features.
- Award ID(s):
- 1916805
- Publication Date:
- NSF-PAR ID:
- 10300369
- Journal Name:
- 13th ACM Web Science Conference 2021
- Page Range or eLocation-ID:
- 137 to 137
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Obeid, Iyad ; Picone, Joseph ; Selesnick, Ivan (Ed.)The Neural Engineering Data Consortium (NEDC) is developing a large open source database of high-resolution digital pathology images known as the Temple University Digital Pathology Corpus (TUDP) [1]. Our long-term goal is to release one million images. We expect to release the first 100,000 image corpus by December 2020. The data is being acquired at the Department of Pathology at Temple University Hospital (TUH) using a Leica Biosystems Aperio AT2 scanner [2] and consists entirely of clinical pathology images. More information about the data and the project can be found in Shawki et al. [3]. We currently have a Nationalmore »
-
HPC networks and campus networks are beginning to leverage various levels of network programmability ranging from programmable network configuration (e.g., NETCONF/YANG, SNMP, OF-CONFIG) to software-based controllers (e.g., OpenFlow Controllers) to dynamic function placement via network function virtualization (NFV). While programmable networks offer new capabilities, they also make the network more difficult to debug. When applications experience unexpected network behavior, there is no established method to investigate the cause in a programmable network and many of the conventional troubleshooting debugging tools (e.g., ping and traceroute) can turn out to be completely useless. This absence of troubleshooting tools that support programmability ismore »
-
The application areas for plastic optical fibers such as in-building or aircraft networks usually have tight power budgets and require multiple passive components. In addition, advanced modulation formats are being considered for transmission over plastic optical fibers (POFs) to increase spectral efficiency. In this scenario, there is a clear need for a flexible and dynamic system-level simulation framework for POFs that includes models of light propagation in POFs and the components that are needed to evaluate the entire system performance. Until recently, commercial simulation software either was designed specifically for single-mode glass fibers or modeled individual guided modes in multimodemore »
-
1. Description of the objectives and motivation for the contribution to ECE education The demand for wireless data transmission capacity is increasing rapidly and this growth is expected to continue due to ongoing prevalence of cellular phones and new and emerging bandwidth-intensive applications that encompass high-definition video, unmanned aerial systems (UAS), intelligent transportation systems (ITS) including autonomous vehicles, and others. Meanwhile, vital military and public safety applications also depend on access to the radio frequency spectrum. To meet these demands, the US federal government is beginning to move from the proven but inefficient model of exclusive frequency assignments to amore »