It takes great effort to manually or semi-automatically convert free-text phenotype narratives (e.g., morphological descriptions in taxonomic works) to a computable format before they can be used in large-scale analyses. We argue that neither a manual curation approach nor an information extraction approach based on machine learning is a sustainable solution to produce computable phenotypic data that are FAIR (Findable, Accessible, Interoperable, Reusable) (Wilkinson et al. 2016). This is because these approaches do not scale to all biodiversity, and they do not stop the publication of free-text phenotypes that would need post-publication curation. In addition, both manual and machine learningmore »
GraphTrans: A Software System for Network Conversions for Simulation, Structural Analysis, and Graph Operations
Network representations of socio-physical systems are ubiquitous, examples being social (media) networks and infrastructure networks like power transmission andwater systems. The many software tools that analyze and visualize networks, and carry out simulations on them, require different graph formats. Consequently, it is important to develop software for converting graphs that are represented in a given source format into a required representation in a destination format. For network-based computations, graph conversion is a key capability that facilitates interoperability among software tools. This paper describes such a system called GraphTrans to convert graphs among different formats. This system is part of a new cyberinfrastructure for network science called net.science. We present the GraphTrans system design and implementation, results from a performance evaluation, and a case study to demonstrate its utility.
- Award ID(s):
- 1916670
- Publication Date:
- NSF-PAR ID:
- 10310253
- Journal Name:
- Winter Simulation Conference
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We describe a software system called ExecutionManager (abbreviated EM) that controls the execution of third-party software (TPS) for analyzing networks. Based on a configuration file that contains a specification for the execution of each TPS, the system launches any number of stand-alone TPS codes, if the projected execution time and the graph size are within user-imposed limits. A system capability is to estimate the running time of a TPS code on a given network through regression analysis, to support execution decision-making by EM. We demonstrate the usefulness of EM in generating network structure parameters and distributions, and in extracting meta-datamore »
-
Data engineering is becoming an increasingly important part of scientific discoveries with the adoption of deep learning and machine learning. Data engineering deals with a variety of data formats, storage, data extraction, transformation, and data movements. One goal of data engineering is to transform data from original data to vector/matrix/tensor formats accepted by deep learning and machine learning applications. There are many structures such as tables, graphs, and trees to represent data in these data engineering phases. Among them, tables are a versatile and commonly used format to load and process data. In this paper, we present a distributed Pythonmore »
-
Intrusion detection systems are a commonly deployed defense that examines network traffic, host operations, or both to detect attacks. However, more attacks bypass IDS defenses each year, and with the sophistication of attacks increasing as well, we must examine new perspectives for intrusion detection. Current intrusion detection systems focus on known attacks and/or vulnerabilities, limiting their ability to identify new attacks, and lack the visibility into all system components necessary to confirm attacks accurately, particularly programs. To change the landscape of intrusion detection, we propose that future IDSs track how attacks evolve across system layers by adapting the concept ofmore »
-
In recent years, smart grid communications (SGC) has evolved to use new technologies not only for data delivery but also for enhanced smart grid (SG) security and reliability. Software Defined Networks (SDN) has proved to be a reliable and efficient architecture for handling diverse communication systems due to their ability to divide responsibilities of the network using control plane and data plane. This paper presents a graph learning approach for detecting and identifying Distributed Denial of Service (DDoS) attacks in SDN-SGC systems (GLASS). GLASS is a two phase framework that (1) detects if SDN-SGC is under DDoS attack using supervisedmore »